Investigation on rickettsiae natural infection in mice and vector arthropods in partial areas of Yunnan
-
摘要:
目的 了解云南地区宿主动物和媒介自然感染立克次体的情况。 方法 采用鼠夹和鼠笼捕鼠,采集鼠体表的恙螨和耕牛体表的蜱虫,对鼠脾脏、恙螨和蜱虫提取DNA,应用巢式PCR扩增立克次体groEL基因,基因序列测定后与其它已知序列进行同源性分析。 结果 从410份样品中扩增出立克次体groEL片断19份(阳性率4.63%),其中恙虫病东方体(Ot)阳性率2.68%(11/410),斑点热立克次体(SFGR)阳性率1.22%(5/410),莫氏立克次体(Rm)阳性率0.49%(2/410),立克次体共生菌(Re)阳性率0.24%(1/410)。与其它已知序列进行同源性分析,检出11株Ot的相似性为93.6%~100%,分别与GenBank中已知立克次体序列的最高相似性在96.1%~100%;检出5株SFGR相似性为92.1%~99.5%,分别与GenBank中已知序列的最高相似性在98.9%~100%;检出Rm 2株,均与Wilmington株的相似性达100%;检出Re 1株,与Re(EU435143)的相似性最高为98.9%。 结论 云南地区宿主动物及媒介中存在多种立克次体感染,应加强立克次体病的监测与防制工作。 Abstract:Objective To investigate rickettsiae infection from host animals and vector arthropods in some areas of Yunnan Province. Methods Rat clip and cage traps were used to capture mice. Chiggers from body surface of mice and ticks from body surface of farm cattle were collected. DNAs were extracted from mice spleens, chiggers and ticks. Rickettsiae groEL segment were amplified by nested-polymerase chain reaction (nPCR), sequenced to analyze the homology with other known sequences. Results A total of 410 samples were collected for rickettsiae groEL segment detection with nPCR and 19 samples (4.63%) showed positive for rickettsiae groEL segment. Among them, 2.68%(11/410)were positive for Orientia tsutsugamsushi (Ot) groEL segment, and 1.22%(5/410)were positive for spotted fever group rickettsia (SFGR) groEL segment, and 0.49%(2/410)were positive for rickettsia mooseri (Rm) groEL segment, and 0.24%(1/410)were positive for rickettsia endosymbiont(Re) groEL segment. When analyzed the homology with other known sequences, 11Ot strains with 93.6%-100% similarities among them in this study shared the highest similarity with other Ot strains from GenBank respectively, reached up to 96.1%-100%; The groEL segments of 5 SFGR strains with 92.1%-99.5% similarities among them in this study shared highest similarity with other SFGR strains from other GenBank respectively, reached up to 98.9%-100%; In this study groEL segments of 2 Rm strains all showed 100% similarity with Wilmington strain (GenBank No: AE017197); One groEL segment of Re showed 98.9% similarity with Re strain (GenBank No: EU435143). Conclusion There were kinds of rickettsiaes infection in host animals and vector arthropods in Yunnan Province, so the monitoring and prevention of the Rickettsiosis should be strengthened. -
Key words:
- Rickettsiae /
- Natural infection /
- Gene sequence analysis /
- Yunnan province
-
表 1 巢式PCR检测立克次体基因groEL阳性数
Table 1. Positive result of nPCR detection for Rickettsiae groEL segment
样本 检测数 Ot SFGR Rm Re 合计 鼠类 343 8(2.33) 1(0.29) 2(0.58) 0(0.00) 11(3.21) 蜱虫 48 0(0.00) 2(4.17) 0(0.00) 1(2.08) 3(6.25) 恙螨 19 3(15.79) 2(10.53) 0(0.00) 0(0.00) 5(26.32) 合计 410 11(2.68) 5(1.22) 2(0.49) 1(0.24) 19(4.63) -
[1] Rickards AL. Worldwide detection and identification of new and old rickettsiae and rickettsial diseases[J]. FEMS Immunol Med Microbiol, 2012, 64(1): 107-110. DOI: 10.1111/j.1574-695X.2011.00875.x. [2] Fang R, Blanton LS, Walker DH. Rickettsiae as emerging infectious agents[J]. Clin Lab Med, 2017, 37(2): 383-400. DOI: 10.1016/j.cll.2017.01.009. [3] Parola P, Paddock CD, Socolovschi C, et al. Update on tick-borne rickettsioses around the world: a geographic approach[J]. Clin Microbiol Rev, 2013, 26(4): 657-702. DOI: 10.1128/CMR.00032-13. [4] Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics[J]. Biol Rev Camb Philos, 2011, 86(2): 379-405. DOI: 10.1111/j.1469-185X.2010.00151.x. [5] Blanton LS. Rickettsial infections in the tropics and in the traveler[J]. Curr Opin Infect Dis, 2013, 26(5): 435-440. DOI: 10.1097/QCO.0b013e328363811b. [6] 俞东征, 梁国栋. 人兽共患传染病学[M]. 北京: 科技出版社. 2009, 613-668.Yu DZ, Liang GD. Zoonotic infectious diseases[M]. Beijing: Science Press, 2009, 613-668. [7] 龚健仁. 我国恙虫病的分布状况与研究概况[J]. 中华疾病控制杂志, 2016, 20(11): 1176-1181. DOI: 10.16462/j.cnki.zhjbkz.2016.11.025.Gong JR. The distribution and general situation on epidemiology studies of tsutsugamushi disease in China. [J]. Chin J Dis Control Prev, 2016, 20(11): 1176-1181. DOI: 10.16462/j.cnki.zhjbkz.2016.11.025. [8] Zhang WY, Wang LY, Ding F, et al. Scrub typhus in mainland China, 2006-2012: the need for targeted public health interventions[J]. PLoS Negl Trop Dis, 2013, 7(12): e2493. DOI: 10.1371/journal.pntd.0002493. [9] Cao J, Ya HX, Yuan QH, et al. Hierarchical cluster analysis on the incidences of scrub typhus in Yunnan province, China, 2006-2014[J]. Chinese Journal of Zoonoses, 2015, 31(8): 714-716, 723. DOI: 10.3969/cjz.j.issn.1002-2694.2015.08.006. [10] 亚红祥, 张云智, 习严梅. 云南省2005-2014年斑疹伤寒流行特征分析[J]. 中国媒介生物学及控制杂志, 2017, 28(4): 359-361, 378. DOI: 10.11853/j.issn.1003.8280.2017.04.013.Ya HX, Zhang YZ, Xi YM. Analysis on epidemiological characteristics of typhus in Yunnan province, China in 2005-2014[J]. Chin J Vector Bio &Control, 2017, 28(4): 359-361. DOI: 10.11853/j.issn.1003.8280.2017.04.013. [11] 亚红祥, 张云智. 云南省不明原因发热患者恙虫病东方体实验室检测分析[J]. 疾病监测, 2017, 32(6): 500-503. DOI: 10.3784/j.issn.1003-9961.2017.06.014.Ya HX, Zhang YZ. Laboratory detection of Orientia tsutsugamushi in patients with fever of unknown origin in Yunnan province, China[J]. Disease Surveillance, 2017, 32(6): 500-503. DOI: 10.3784/j.issn.1003-9961.2017.06.014. [12] Zhang LJ, Li XM, Zhang DR, et al. Molecular epidemic survey on co-prevalence of scrub typhus and marine typhus in Yuxi city, Yunnan province of China[J]. Chin Med J, 2007, 120(15): 1314-1318. doi: 10.1097/00029330-200708010-00004 [13] Park HS, Lee JH, Jeong EJ, et al. Rapid and simple idendification of orientia tsutsugamushi from other group rickettsia by duplex PCR assay using groEL gene[J]. Micro Immunol, 2005, 49(6): 545-549. doi: 10.1111/j.1348-0421.2005.tb03760.x [14] Wu XB, Na RH, Wei SS, et al. Distribution of tick-borne diseases in China[J]. Parasit Vectors, 2013, 6: 119. DOI: 10.1186/1756-3305-6-119. [15] 张婧, 张毅波, 薛延韬, 等. 昆虫次生内共生菌Rickettsia研究进展[J]. 环境昆虫学报, 2017, 39(2): 431-443. DOI: 10.3969/j.issn.1674-0858.2017.02.24.Zhang J, Zhang YB, Xie YT, et al. Research advances on a secondary endosymbiont Rickettsia in insect[J]. J Enviro Entomol, 2017, 39(2): 431-443. DOI: 10.3969/j.issn.1674-0858.2017.02.24. [16] Paris DH, Aukkanit N, Jenjaroen K, et al. A highly sensitive quantitative real-time PCR assay based on the groEL gene of contemporary Thai strains of Orientia tsutsugamushi[J]. Clin Microbiol Infect, 2009, 15(5): 488-495. DOI: 10.1111/j.1469-0691.2008.02671.x. [17] Arai S, Tabara K, Yamamoto N, et al. Molecular phylogenetic analysis of Orientia tsutsugamushi based on the groES and groEL genes[J]. Vector Borne Zoonotic Dis, 2013, 13(11): 825-829. DOI: 10.1089/vbz.2012.1155. [18] Blacksell SD, Luksameetanasan R, Kalambaheti T, et al. Genetic typing of the 56-kDa type-specific antigen gene of contemporary Orientia tsutsugamushi isolates causing human scrub typhus at two sites in north-eastern and western Thailand[J]. FEMS Immunol Med Microbiol, 2008, 52(3): 335-342. doi: 10.1111/j.1574-695X.2007.00375.x [19] 亚红祥, 张云智, 王静林. 云南省部分地区鼠类与人自然感染恙虫病东方体调查[J]. 疾病监测, 2016, 31(2): 145-148. DOI: 10.3784/j.issn.1003-9961.2016.02.014.Ya HX, Zhang YZ, Wang JL. Investigation of Orientia tsutsugamushi infection in rodents and human in Yunnan[J]. Disease Surveillance, 2016, 31(2): 145-148. DOI: 10.3784/j.issn.1003-9961.2016.02.014. [20] 张鲁燕, 毕振旺, 赵仲堂. 我国恙虫病东方体分子流行病学研究进展[J]. 中华流行病学杂志, 2014, 35(1): 88-92. doi: 10.3760/cma.j.issn.0254-6450.2014.01.021Zhang LY, Bi ZW, Zhao ZT. Recent advances in molecular epidemiology of orientia tsttsugamushi in China[J]. Chin J Epidemiol, 2014, 35(1): 88-92. DOI: 10.3760/cma.j.issn.0254-6450.2014.01.021. [21] Jia N, Zheng YC, Ma L, et al. Human infections with Rickettsia raoultii, China[J]. Emerg Infect Dis, 2014, 20(5): 866-868. DOI: 10.3201/eid2005.130995. [22] Jia N, Zheng YC, Jiang JF, et al. Human infection with candidatus Rickettsia tarasevichiae[J]. N Engl J Med, 2013, 369(12): 1178-1180. DOI: 10.1056/NEJMc1303004. [23] Jia N, Jiang JF, Huo QB, et al. Rickettsia sibirica subspecies sibirica BJ-90 as a cause of human disease[J]. N Engl J Med, 2013, 369(12): 1176-1178. DOI: 10.1056/NEJMc1303625. [24] Xia H, Hu C, Zhang D, et al. Metagenomic profile of the viral communities in Rhipicephalus spp. ticks from Yunnan, China[J]. PLoS ONE, 2015, 10(3): e0121609. DOI: 10.1371/journal.pone.0121609. [25] Hu B, Zeng LP, Yang XL, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus[J]. PLoS Pathog, 2017, 13(11): e1006698. DOI: 10.1371/journal.ppat.1006698.