Analysis of transmission rate of hand-foot-mouth disease in different provinces in China
-
摘要:
目的 了解不同气候带省份手足口病(hand,foot and mouth disease,HFMD)发病数的周期性,传染率的季节性及影响因素,为HFMD的防治提供科学的参考依据。 方法 选取海南省、湖南省、山东省、青海省和内蒙古自治区这5个具有气候代表性的省,利用小波变换分析各省HFMD发病数周期性,建立时间序列易感者-感染者-康复者(time series susceptible infected recovered,TSIR)模型,应用马尔科夫蒙特卡洛方法(markov chain monte carlo,MCMC)估计TSIR模型中参数,分析各省以及全国的HFMD的传染率季节性;最后建立线性回归模型分析气候、假期和春运对传染率季节性的影响。 结果 (1) 不同气候带的各省的HFMD传染率均呈季节性,且有相似的模式,2月至5月为高峰期;(2)HFMD的传染率季节性既受气候的影响,又受人群接触率的影响:内蒙古自治区的HFMD传染率仅受相对湿度的影响,其他各省的传染率仅受春运的影响。 结论 HFMD传染率有明显季节性,在2月有大幅度增加,春运期间要加强对其防控。 Abstract:Objective To understand the periodicity of the incidence of hand, foot and mouth disease (HFMD) in representative provinces from different climatic zones in China, and to analyze the seasonality and the factors influencing the HFMD transmission rate, to provide a scientific reference for the prevention and treatment of HFMD. Methods Five climate-representative provinces including Hainan, Hunan, Shandong, Qinghai and Inner Mongolia were selected as research objects. Wavelet analysis was used to analyze the cyclic pattern of HFMD incidence. Time series susceptible infected recovered (TSIR) model was established to examine the HFMD transmission rate of the five provinces and of the entire country. The parameters in the TSIR model were estimated by markov chain monte carlo (MCMC). Linear regression model was used to analyze the effects of climate factors, school terms and the Spring Festival travel rush on the transmission rate of HFMD. Results (1) HFMD incidence in the provinces and the entire country exhibited annual or semi-annual cycles and the transmission rates in all provinces showed obvious seasonality with similar patterns. February to May was the peak period of HFMD transmission rate. (2) The transmission rate of HFMD was affected by the climate or the contact rate, depending on which factor was dominant. Conclusions The transmission rate of HFMD had obvious seasonality, which had increased significantly in February, and it was necessary to strengthen its prevention and control during the Spring Festival. -
Key words:
- HFMD /
- Transmission rate /
- Seasonality /
- Climate /
- School terms /
- Spring Festival travel rush
-
表 1 线性回归模型分析结果
Table 1. Results of linear regression model
相对湿度 春运期间 决定系数 回归系数 P值 回归系数 P值 海南 - - 2.655×10-6 < 0.001 0.759 湖南 - - 8.060×10-7 < 0.001 0.799 山东 - - 4.485×10-7 0.024 0.358 内蒙古 -1.755×10-7 < 0.001 - - 0.786 青海 - - 4.321×10-6 0.058 0.245 注:月平均气温、降雨量、光照时数和开学放假对手足口病传染率季节性没有显著影响,在表中没有表示。 -
[1] Zhao J, Jiang F, Zhong L, et al. Age patterns and transmission characteristics of hand foot and mouth disease in China[J]. BMC Infect Dis, 2016, 16(1): 691. DOI: 10.1186/s12879-016-2008-y. [2] 仲连发, 张志诚, 赵继军. 基于年龄结构的中国大陆手足口病流行特性的分析[J]. 中华疾病控制杂志, 2015, 19(7): 651-654. DOI: 10.16462/j.cnki.zhjbkz.2015.07.002.Zhong LF, Zhang ZC, Zhao JJ. Analysis of epidemiological characteristics of hand, foot and mouth disease in mainland China based on age structure[J]. Chin J Dis Control Prev, 2015, 19(7): 651-654. DOI: 10.16462/j.cnki.zhjbkz.2015.07.002. [3] Wang B, Li J, Wang Y, et al. Understanding the epidemiological characteristics of EV71 and CVA16 infection to aid the diagnosis and treatment of hand, foot, and mouth disease[J]. J Med Virol, 2019, 91(2): 201-207. DOI:10.1002/jmv. 25282. [4] Keeling MJ, Rohani P, Pourbohloul B. Modeling infectious diseases in humans and animals[J]. Clin Infect Dis, 2008, 47(6): 864-865. DOI: 10.1086/591197. [5] Joseph CA, Noah ND. Epidemiology of chickenpox in England and Wales, 1967-1985[J]. Br Med J (Clin Res Ed), 1988, 296(6623): 673-676. DOI: 10.1136/bmj.296.6623.673. [6] 陈佶, 范学志, 赵继军. 手足口病传染率季节性及其与人口流动的关系[J]. 复杂系统与复杂性科学, 2017, 14(3): 97-102. DOI: 10.13306/j.1672-3813.2017.03.010.Chen J, Fan XZ, Zhao JJ. The seasonality of hand-foot-mouth disease infection rate and its relationship with population mobility[J]. Journal of Complex Systems and Complexity, 2017, 14(3): 97-102. DOI: 10.13306/j.1672-3813.2017.03.010. [7] 赵佳楠, 薛超, 仲连发, 等. 重庆市手足口病接触率及感染力分析[J]. 科学通报, 2016, 61(22): 2475-2482. DOI: 10.1007/N972016-00038.Zhao JN, Xue C, Zhong LF, et al. Analysis of contact rate and infectivity of hand, foot and mouth disease in Chongqing[J]. Chinese Science Bulletin, 2016, 61(22): 2475-2482. DOI: 10.1007/N972016-00038. [8] Xing W, Liao Q, Viboud C, et al. Hand, foot, and mouth disease in China, 2008-2012: an epidemiological study[J]. The Lancet. Infectious Diseases, 2014, 14(4): 308-318. DOI: 10.1016/S1473-3099(13)70342-6. [9] Wang JF, Guo Y, Christakos G, et al. Hand foot and mouth disease: spatiotemporal transmission and climate[J]. Int J Health Geogr, 2011, 10: 25. DOI: 10.1186/1476-072X-10-25. [10] Zhao J, Eisenberg J, Spicknall IH, et al. Model analysis of fomite mediated influenza transmission[J]. Plos One, 2012, 7(12): e51984. DOI: 10.1371/journal.pone.0051984. [11] Mahmud AS, Metcalf CJ, Grenfell BT. Comparative dynamics, seasonality in transmission, and predictability of childhood infections in Mexico[J]. Epidemiol Infect, 2017, 145(3): 607-625. DOI: 10.1017/S0950268816002673. [12] Ferrari MJ, Djibo A, Grais RF, et al. Rural-urban gradient in seasonal forcing of measles transmission in Niger[J]. Proc Biol Sci, 2010, 277(1695): 2775-2782. DOI: 10.1098/rspb.2010.0536. [13] Bjornstad ON, Finkenstadt BF, Grenfell BT. Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model[J]. Ecological Monographs, 2002, 72(2): 169-184. DOI: 10.2307/3100023. [14] Li S, Ma C, Hao L, et al. Demographic transition and the dynamics of measles in six provinces in China: A modeling study[J]. PLoS Med, 2017, 14(4): e1002255. DOI: 10.1371/journal.pmed.1002255. [15] Ferrari MJ, Grais RF, Bharti N, et al. The dynamics of measles in sub-Saharan Africa[J]. Nature, 2008, 451(7179): 679-684. DOI: 10.1038/nature06509. -