Study on the association between ambient temperature and coronary heart disease in rural area based on weighted delay effect
-
摘要:
目的 探讨气温指标与冠心病发病的关联,为冠心病的防治提供参考。 方法 利用2010-2016年庆阳农村地区冠心病及气象数据,在考虑气象因素对冠心病发病的短期相关性和滞后效应基础上,构建加权指标估计延迟效应分布,采用广义相加模型分性别、年龄段探讨加权气温指标与冠心病发病的关联。 结果 庆阳农村地区各气温指标对65岁以上男性人群冠心病发病影响均具有统计学意义(均有P < 0.05),加权24 h变温的效应最大,加权24 h变温每增加1℃,发病风险增大8.775%(95%CI:4.630%~13.084%);各人群冠心病发病对加权24 h变温均敏感(均有P < 0.05),且在65岁以上男性、65岁以下男性、65岁以上女性和65岁以下女性四个人群中,其效应值依次递减;加权最高气温和加权气温日较差仅在65岁以上人群中有效应,且男性人群效应高于女性。 结论 温度变化对冠心病发病影响最大,无论是骤冷或是骤热,均会增加冠心病发病风险。65岁以上男性人群冠心病发病对气温变化更敏感,且冠心病人次与气温指标有明显的短期相关性。 Abstract:Objective To explore the relationship between temperature and the incidence of coronary heart disease, so as provide reference for early prevention and treatment of coronary heart disease. Methods Using the coronary heart disease and meteorological data of rural in Qingyang from 2010 to 2016, based on the short-term correlation and hysteresis effect of meteorological factors on the incidence of coronary heart disease, the weighted indicator was used to estimate the delay effect distribution, and the generalized additive model was used to analyze the relationship between weighted temperature indicators and the incidence of coronary heart disease by gender and age group. Results The temperature indicators in rural areas of Qingyang had significant effects on the incidence of coronary heart disease in males over 65 years old (All P < 0.05), and the effect of weighted 24 h temperature change was the largest. For every 1℃ increase in weighted 24 h temperature change, the risk of disease increased by 8.775% (95% CI: 4.630%-13.084%). The incidence of coronary heart disease in all populations was sensitive to weighted 24 h temperature change (All P < 0.05), and in the four groups of men over 65 years old, men under 65, women over 65 and women under 65, the effect value decreases in turn. The weighted maximum temperature and diurnal temperature range were only significant in people over 65 years old, and the male population effect was higher than women. Conclusions Temperature change has the greatest impact on the incidence of coronary heart disease. Whether it is sudden heat or cold, it will increase the risk of coronary heart disease. The temperature indicator has a significant impact on the daily incidence of coronary heart disease among males over 65 years old, and the short-term correlation of temperature indicators is obvious. -
表 1 2010-2016年庆阳农村地区气象因素基本情况
Table 1. Basic situation of meteorological factors in rural areas from 2010 to 2016
气象因素 x±s 极小值 P25 P50 P75 极大值 平均气温 9.922±9.904 -15.900 1.300 11.300 18.825 28.250 24 h变温 0.000±2.013 -11.250 -1.100 0.200 1.330 6.800 最高温度 15.895±10.157 -10.850 7.300 17.450 24.600 34.700 最低温度 5.240±9.874 -21.200 -3.350 6.300 14.050 23.050 日较差 10.655± 4.138 1.000 7.625 10.800 13.700 23.450 相对湿度 58.350±19.781 11.000 43.000 58.000 74.500 99.000 平均气压 86.702± 0.543 85.290 86.280 86.675 87.105 88.700 表 2 冠心病逐日入院数及气象因素的相关关系
Table 2. Correlation between the number of daily admissions to coronary heart disease and meteorological factors
人次 平均温度 24 h变温 日较差 相对湿度 平均气压 最高温度 平均温度 0.021 24 h变温 0.093a 0.098a 日较差 0.151a 0.064a 0.431a 相对湿度 -0.173a 0.171a -0.205a -0.657a 平均气压 -0.082a -0.750a -0.162a -0.096a -0.089a 最高温度 0.050a 0.977a 0.167 0.257a 0.042 -0.743a 最低温度 -0.019 0.971a -0.014 -0.155a 0.330a -0.717a 0.909a 注:a表示P<0.05。 表 3 2010-2016年庆阳农村地区加权气温指标对冠心病发病的影响
Table 3. Impact of weighted temperature indicators on the incidence of coronary heart disease from 2010 to 2016
加权指标 β值 P值 RR(95% CI)值 ER(95% CI)值 男 ≥65岁 平均气温 0.014 < 0.001 1.014(1.008~1.020) 1.398(0.823~1.977) 最高气温 0.013 < 0.001 1.013(1.008~1.019) 1.345(0.810~1.884) 最低气温 0.014 < 0.001 1.014(1.008~1.021) 1.435(0.817~2.056) 24小时变温 0.084 < 0.001 1.088(1.046~1.131) 8.775(4.630~13.084) 日较差 0.024 0.003 1.024(1.008~1.041) 2.430(0.822~4.064) < 65岁 平均气温 0.006 0.132 1.006(0.998~1.014) 0.608(-0.182~1.405) 最高气温 0.005 0.194 1.005(0.998~1.012) 0.478(-0.242~1.203) 最低气温 0.007 0.124 1.007(0.998~1.015) 0.667(-0.182~1.522) 24小时变温 0.072 0.003 1.074(1.024~1.127) 7.434(2.427~12.686) 日较差 -0.000 0.989 1.000(0.981~1.019) -0.014(-1.917~1.926) 女 ≥65岁 平均气温 0.007 0.083 1.007(0.999~1.014) 0.661(-0.086~1.414) 最高气温 0.008 0.023 1.008(1.001~1.014) 0.774(0.108~1.445) 最低气温 0.006 0.149 1.006(0.998~1.014) 0.584(-0.208~1.382) 24小时变温 0.066 < 0.001 1.068(1.036~1.102) 6.848(3.637~10.159) 日较差 0.013 0.044 1.013(1.000~1.026) 1.300(0.037~2.579) < 65岁 平均气温 -0.006 0.211 0.994(0.984~1.004) -0.623(-1.591~0.354) 最高气温 -0.004 0.305 0.996(0.987~1.004) -0.448(-1.298~0.410) 最低气温 -0.007 0.208 0.993(0.983~1.004) -0.669(-1.703~0.376) 24小时变温 0.056 0.004 1.057(1.018~1.098) 5.723(1.754~9.846) 日较差 0.000 0.988 1.000(0.984~1.016) 0.013(-1.583~1.635) 注:模型控制了相对湿度、平均气压,加入了节假日和星期效应,分别引入了平均气温、最高气温、最低气温、24小时变温、气温日较差。 -
[1] 陈伟伟, 高润霖, 刘力生, 等. 《中国心血管病报告2017》概要[J]. 中国循环杂志, 2018, 33(1): 1-8. DOI: 10.3969/j.issn.1000-3614.2018.01.001.Chen WW, Gao RL, Liu LS, et al. Summary of China Cardiovascular Disease Report 2017 summary[J]. China Circulation Journal, 2018, 33(01): 1-8. DOI: 10.3969/j.issn.1000-3614.2018.01.001. [2] Mcmichael J. Prevention of coronary heart-disease[J]. Lancet, 1976, 2(7999): 1350-1351. [3] 艾聪, 李娟, 张珊姗, 等. 辽宁农村地区2009-2015年冠心病死亡趋势及早死所致疾病负担研究[J]. 中华疾病控制杂志, 2018, 22(11): 1106-1109. DOI: 10.16462/j.cnki.zhjbkz.2018.11.004.Ai C, Li J, Zhang SS, et al. The trend of coronary heart disease mortality and disease burden among rural area of Liaoning Province from 2009 to 2015[J]. Chin J Dis Control Prev, 2018, 22(11): 1106-1109. DOI: 10.16462/j.cnki.zhjbkz.2018.11.004. [4] Wu Z, Yao C, Zhao D, et al. Sino-monica project: a collaborative study on trends and determinants in cardiovascular diseases in China, Part i: morbidity and mortality monitoring[J]. Circulation, 2001, 103(3): 462-468. DOI: 10.1161/01.CIR.103.3.462. [5] Zhang XH, Lu ZL, Liu L. Coronary heart disease in China[J]. Heart, 2008, 94(9): 1126-1131. DOI: 10.1136/hrt.2007.132423. [6] Watts N, Amann M, Ayeb-Karlsson S, et al. The Lancet countdown on health and climate change: from 25 years of inaction to a global transformation for public health[J]. The Lancet, 2018, 391(10120): 581-630. DOI: 10.1016/s0140-6736(17)32464-9. [7] Williams ML, Lott MC, Kitwiroon N, et al. The Lancet countdown on health benefits from the UK climate change act: a modelling study for Great Britain[J]. Lancet Planet Health, 2018, 2(5): e202-e213. DOI: 10.1016/s2542-5196(18)30067-6. [8] Pan WH, Li LA, Tsai MJ. Temperature extremes and mortality from coronary heart disease and cerebral infarction in elderly Chinese[J]. The Lancet, 1995, 345(8946): 353-355. DOI: 10.5555/uri:pii:S0140673695903410. [9] Zhao XT, Shan SL, Jin LZ, et al. Ambient temperature and coronary heart disease mortality in Beijing, China: a time series study[J]. Environ Health, 2012, 11(1): 56-62. DOI: 10.1186/1476-069X-11-56. [10] Bai L, Li Q, Wang J, et al. Increased coronary heart disease and stroke hospitalisations from ambient temperatures in Ontario[J]. Heart, 2018, 104(8): 673-679. DOI: 10.1136/heartjnl-2017-311821. [11] Basu R. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence[J]. Epidemiologic reviews, 2002, 24(2): 190-202. DOI: 10.1093/epirev/mxf007. [12] Turner LR, Barnett AG, Connell D, et al. Ambient temperature and cardiorespiratory morbidity: a systematic review and meta-analysis[J]. Epidemiology, 2012, 23(4): 594-606. DOI: 10.1097/EDE.0b013e3182572795. [13] Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study[J]. Lancet, 2015, 386(9991): 369-375. DOI: 10.1016/s0140-6736(14)62114-0. [14] Shadish WR, Zuur AF, Sullivan KJ. Using generalized additive (mixed) models to analyze single case designs[J]. J Sch Psychol, 2014, 52(2): 149-178. DOI: 10.1016/j.jsp.2013.11.004. [15] Hurvich CM, Simonoff JS, Tsai CL. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion[J]. J R Stat Soc Serier B-Stat Methodol, 1998, 60: 271-293. DOI: 10.1111/1467-9868.00125. [16] Ma W, Chen R, Kan H. Temperature-related mortality in 17 large Chinese cities: how heat and cold affect mortality in China[J]. Environ Res, 2014, 134: 127-133. DOI: 10.1016/j.envres.2014.07.007. [17] Lim YH, Hong YC, Kim H. Effects of diurnal temperature range on cardiovascular and respiratory hospital admissions in Korea[J]. Sci Total Environ, 2012, 417-418: 55-60. DOI: 10.1016/j.scitotenv.2011.12.048. [18] Phung D, Thai PK, Guo Y, et al. Ambient temperature and risk of cardiovascular hospitalization: An updated systematic review and meta-analysis[J]. Sci Total Environ, 2016, 550: 1084-1102. DOI: 10.1016/j.scitotenv.2016.01.154. [19] Zhang XJ, Ma WP, Zhao NQ, et al. Time series analysis of the association between ambient temperature and cerebrovascular morbidity in the elderly in Shanghai, China[J]. Sci Rep, 2016, 6: 19052. DOI: 10.1038/srep19052. [20] 罗雪莲, 段俊, 储文革, 等. 2014-2016年铜陵地区昼夜温差对精神分裂症影响的时间序列研究[J]. 中华疾病控制杂志, 2018, 22(10): 1046-1050. DOI: 10.16462/j.cnki.zhjbkz.2018.10.016.Luo XL, Duan J, Chu WG, et al. A time-series study on the influence of diurnal temperature range on schizophrenia in Tongling City 2014-2016[J]. Chin J Dis Control Prev, 2018, 22(10): 1046-1050. DOI: 10.16462/j.cnki.zhjbkz.2018.10.016. -