Estimation of the agreement between different molecular detection strategies for diagnosing Enterovirus in hospitalized children with hand, foot and mouth disease
-
摘要:
目的 本研究旨在了解单纯实时荧光定量逆转录聚合酶链式扩增技术(fluorescence-based quantitative real-time reverse transcription-polymerase chain reaction,qRT-PCR)及qRT-PCR联合巢式聚合酶链式反应(nested polymerase chain reaction,nested PCR)测序两种检测策略在检测手足口病(hand,foot and mouth disease,HFMD)住院患儿肠道病毒的一致性及其相关因素。 方法 2017年2月―2018年2月在河南省建立以医院为基础的HFMD住院患儿前瞻性队列,收集研究对象相关信息并采集生物标本,分别开展单纯qRT-PCR及qRT-PCR联合nested PCR测序的肠道病毒核酸检测。 结果 两种检测策略总体的一致性较好(kappa>0.60)。标本类型、肠道病毒A组71血清型(enterovirus-A71,EV-A71)疫苗接种史、发病到采样时间、疾病严重程度以及年龄与肠道病毒的检出收益相关。qRT-PCR联合nested PCR测序的样本采样时间≥4 d、不同检测策略的样本采样时间差>2 d会降低两种检测策略EV-A71矫正机遇后的一致性,而重症与EV-A71矫正机遇后的高一致性有关。标本类型(P=0.033)及疾病严重程度(P=0.020)是两种检测策略柯萨奇病毒A组16(coxsackievirus-A16,CV-A16)矫正机遇后一致性的独立相关因素。 结论 qRT-PCR及qRT-PCR联合nested PCR测序的两种检测策略的一致性较好,患儿个体情况及标本采集时间会影响分子检测的检出收益及一致性。 Abstract:Objective The aim of this study was to understand the diagnostic yield of fluorescence-based quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) only and qRT-PCR combined with several nested polymerase chain reaction (nested PCR) sequencing for detecting enterovirus in hospitalized children with hand, foot and mouth disease (HFMD), furthermore to analyze the agreement and its associated factors of the two testing strategies. Methods A hospital-based prospective HFMD cohort was established in Henan from February 2017 to February 2018. The relevant information and biological specimens of the participants were collected. According to the detection strategies, qRT-PCR and qRT-PCR combined with several nested PCR sequencing were performed both for enterovirus diagnosis independently. Results The agreement between the two testing strategies in the detection for enterovirus-A71 (EV-A71), coxsackievirus-A16 (CV-A16) and other enterovirus (EVs) were good (kappa>0.60). Sampling types and with EV-A71 vaccination, the time of sample collection after onset, age and disease severity were related to detection yield. The sampling days after onset of specimens for qRT-PCR combined with nested PCR sequencing ≥ 4 d and the sampling time interval of different detection strategies more than 2 d would reduce the chance-corrected agreement between the two testing strategies in EV-A71 detection. Severe disease was associated with higher chance-corrected agreement in EV-A71 detection. Specimen type (P=0.033) and disease severity (P=0.020) were independent factors related to the chance-corrected agreement of CV-A16 detection. Conclusions The agreement between the two detection strategies of qRT-PCR and qRT-PCR combined with nested PCR sequencing is relative well. The individual condition of the child and the time of specimen collection would affect the detection yields and consistency of molecular detection. -
Key words:
- Hand, foot and mouth disease /
- Enterovirus /
- Polymerase chain reaction /
- Detection yield /
- Agreement
-
图 3 不同标本及不同诊断结局的两种检测策略一致性分析
注:Bangdiwala图可以直观显示一致性的关键信息ꎮ一致程度由位于对角线的黄色矩形内的蓝色框面积表示.黄色矩形表示最大可能的一致性, 其中黄色框中的蓝色框所占面积越大表示实际观察到的一致性越高.图标的A、B、C、D分别表示:(A)检测结果分为5类(B)按EV -A71阴、阳性分类(C)按CV-A16阴、阳性分类(D)按其他EVs阴、阳性分类.图标的1, 2, 3分别表示按照开展qRT-PCR联合nested PCR测序检测的样本类型分为:(1)全部样本; (2)咽拭子样本; (3)直肠样本.
Figure 3. Agreement analysis of two detection strategies for different specimens and different diagnosis outcomes
表 1 影响两种检测策略肠道病毒检出收益的多因素分析结果(基于Logistic回归分析模型)
Table 1. Associated factors of enterovirus detection yield for two testing strategies (based on Logistic regression analysis model)
检测策略 检测结果(阳性vs.阴性) ORadj(95% CI)值 标本类型(咽拭子vs.直肠标本) 发病至采样时间
(≥4 d vs.<4 d)疾病严重程度(重症vs.轻症) 年龄
(>2岁vs.≤2岁)EV-A71疫苗接种史(是vs.无) qRT-PCR+nested EV-A71 0.25(0.14,0.44)a 1.79(1.26,2.57)a 4.38(3.11,6.16)a 2.19(1.56,3.09)a 0.43(0.20,0.80)b PCR测序检测 CV-A16 0.38(0.22,0.68)a 0.69(0.51,0.92)b 0.30(0.18,0.48)a 1.17(0.86,1.59) 0.88(0.59,1.30) 其他肠道病毒 1.82(1.11,2.99)a 0.61(0.49,0.76)a 0.70(0.54,0.90)a 0.62(0.49,0.78)a 1.53(1.11,2.12)a 商品化试剂盒的 EV-A71 - 3.15(2.15,4.75)a 5.79(4.22,7.98)a 1.83(1.32,2.53)a 0.16(0.06,0.37)a qRT-PCR检测 CV-A16 - 0.74(0.58,0.95)b 0.42(0.29,0.60)a 1.46(1.12,1.89)a 0.90(0.63,1.26) 其他肠道病毒 - 0.74(0.59,0.93)b 0.48(0.37,0.63)a 0.54(0.43,0.68)a 1.74(1.27,2.42)a 注:a表示P<0.01,b表示P<0.05。 表 2 影响两种检测策略修正机遇后一致性的多因素分析结果(基于两阶段的Logistic回归分析模型)
Table 2. Associated factors of chance-corrected agreement between two testing strategies(based on two-stages Logistic regression analysis model)
病原检测一致性(一致vs.不一致) ORadj(95% CI)值 检测方法A的样本类型(咽拭子vs.直肠标本) 检测方法A的发病到采样时间(≥4 d vs.<4 d) 检测方法B的发病到采样时间(≥4 d vs.<4 d) 两种检测方法采样时间差(0~2 d vs.<0 d) 两种检测方法采样时间差(>2 d vs.<0 d) 疾病严重程度(重症vs.轻症) 年龄(>2岁vs. ≤2岁) EV-A71疫苗接种史(是vs.无) EV-A71 1.61(0.85,2.93) 0.45(0.26,0.76)a 1.15(0.57,2.22) 0.69(0.44,1.08) 0.41(0.20,0.86)b 1.67(1.11,2.51)b 1.17(0.79, 1.75) 0.99(0.43, 2.87) CV-A16 0.33(0.10,0.81)b 0.84(0.55,1.28) 1.21(0.76,1.92) 0.83(0.56,1.21) 1.70(0.68,5.18) 0.59(0.38,0.94)b 0.80(0.58, 1.13) 0.84(0.55, 1.33) 其他肠道病毒 0.80(0.40,1.47) 0.79(0.56,1.12) 1.14(0.76,1.71) 1.02(0.74,1.41) 0.58(0.33,1.05) 0.83(0.61,1.15) 1.03(0.77, 1.39) 0.76(0.52, 1.14) 注:检测策略A:qRT-PCR联合nested PCR测序检测。检测策略B:商品化试剂盒的qRT-PCR检测。两种检测策略采样时间差:检测策略B的采样日期减去检测策略A的采样日期。a表示P<0.01,b表示P<0.05。 -
[1] Repass GL, Palmer WC, Stancampiano FF. Hand, foot, and mouth disease: identifying and managing an acute viral syndrome [J]. Cleve Clin J Med, 2014, 81(9):537-543. DOI: 10.3949/ccjm.81a.13132. [2] Zell R. Picornaviridae-the ever-growing virus family [J]. Arch Virol, 2018, 163(2):299-317. DOI: 10.1007/s00705-017-3614-8. [3] Chiang PS, Huang ML, Luo ST, et al. Comparing molecular methods for early detection and serotyping of enteroviruses in throat swabs of pediatric patients [J]. PLoS One, 2012, 7(10):e48269. DOI: 10.1371/journal.pone.0048269. [4] Kim HS, Kim DM, Neupane GP, et al. Comparison of conventional, nested, and real-time PCR assays for rapid and accurate detection of Vibrio vulnificus [J]. J Clin Microbiol, 2008, 46(9):2992-2998. DOI: 10.1128/JCM.00027-08. [5] Zhang T, Cheng Y, Li Y, et al. Evaluationof the diagnostic performance and itsassociatedfactors of a commercial anti-EV-A71 IgM-capture ELISAkit inhospitalizedchildrenwithclinical diagnostic HFMD [J]. J ClinVirol, 2020, 130: 104582. DOI: 10.1016/j.jcv.2020.104582. [6] Li XW, Ni X, Qian SY, et al. Chinese guidelines for the diagnosis and treatment of hand, foot and mouth disease (2018 edition) [J]. World J Pediatr, 2018, 14(5):437-447. DOI: 10.1007/s12519-018-0189-8. [7] Li Y, Zhou Y, Cheng Y, et al. Effectiveness of EV-A71 vaccination in prevention of paediatric hand, foot, and mouth disease associated with EV-A71 virus infection requiring hospitalisation in Henan, China, 2017-18: a test-negative case-control study [J]. The Lancet Child & Adolescent Health, 2019, 3(10):697-704. DOI: 10.1016/s2352-4642(19)30185-3. [8] Lipsitz SR, Parzen M, Fitzmaurice GM, et al. A two-stage logistic regression model for analyzing inter-rater agreement [J]. Psychometrika, 2003, 68(2):289-298. DOI:10.1007/Bf02294802. [9] Gao L, Zou G, Liao Q, et al. Spectrum of enterovirus serotypes causing uncomplicated hand, foot, and mouth disease and enteroviral diagnostic yield of different clinical samples [J]. Clin Infect Dis, 2018, 67(11):1729-1735. DOI: 10.1093/cid/ciy341. [10] Chen J, Fu Y, Ju L, et al. Detection and identification of viral pathogens in patients with hand, foot, and mouth disease by multilocus PCR, reverse-transcription PCR and electrospray ionization mass spectrometry [J]. J Clin Virol, 2014, 59(2):115-119. DOI: 10.1016/j.jcv.2013.11.007. [11] de Crom SC, Obihara CC, de Moor RA, et al. Prospective comparison of the detection rates of human enterovirus and parechovirus RT-qPCR and viral culture in different pediatric specimens [J]. J Clin Virol, 2013, 58(2):449-454. DOI: 10.1016/j.jcv.2013.07.017. [12] Fan X, Jiang J, Liu Y, et al. Detection of human enterovirus 71 and coxsackievirus A16 in an outbreak of hand, foot, and mouth disease in Henan Province, China in 2009 [J]. Virus Genes, 2013, 46(1):1-9. DOI: 10.1007/s11262-012-0814-x. [13] Chung PW, Huang YC, Chang LY, et al. Duration of enterovirus shedding in stool [J]. J Microbiol Immunol Infect, 2001, 34(3):167-70. http://europepmc.org/abstract/MED/11605806 [14] Li J, Lin C, Qu M, et al. Excretion of enterovirus 71 in persons infected with hand, foot and mouth disease [J]. Virol J, 2013, 10:31. DOI: 10.1186/1743-422X-10-31. [15] Wu Q, Fu X, Jiang L, et al. Prevalence of enteroviruses in healthy populations and excretion of pathogens in patients with hand, foot, and mouth disease in a highly endemic area of southwest China [J]. PLoS One, 2017, 12(7):e0181234. DOI: 10.1371/journal.pone.0181234. [16] Wang B, Li J, Wang Y, et al. Understanding the epidemiological characteristics of EV71 and CVA16 infection to aid the diagnosis and treatment of hand, foot, and mouth disease [J]. J Med Virol, 2019, 91(2):201-207. DOI: 10.1002/jmv.25282. [17] Qiu J, Yan H, Cheng N, et al. The clinical and epidemiological study of children with hand, foot, and mouth disease in Hunan, China from 2013 to 2017 [J]. Sci Rep, 2019, 9(1):11662. DOI: 10.1038/s41598-019-48259-1. [18] Ong KC, Wong KT. Understanding enterovirus 71 neuropathogenesis and its impact on other neurotropic enteroviruses [J]. Brain Pathol, 2015, 25(5):614-624. DOI: 10.1111/bpa.12279. [19] He Y, Ong KC, Gao Z, et al. Tonsillar crypt epithelium is an important extra-central nervous system site for viral replication in EV71 encephalomyelitis [J]. Am J Pathol, 2014, 184(3):714-720. DOI: 10.1016/j.ajpath.2013.11.009. [20] Esposito S, Principi N. Hand, foot and mouth disease: current knowledge on clinical manifestations, epidemiology, aetiology and prevention [J]. Eur J Clin Microbiol Infect Dis, 2018, 37(3):391-398. DOI: 10.1007/s10096-018-3206-x. -