• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

急性冠脉综合征患者住院期间新发房颤预测模型的建立与验证

李军政 许祥 张志辉 邬娜 袁志权 贾潇岳 李成英 吴龙 向颖 钟理 李亚斐

李军政, 许祥, 张志辉, 邬娜, 袁志权, 贾潇岳, 李成英, 吴龙, 向颖, 钟理, 李亚斐. 急性冠脉综合征患者住院期间新发房颤预测模型的建立与验证[J]. 中华疾病控制杂志, 2021, 25(2): 204-210. doi: 10.16462/j.cnki.zhjbkz.2021.02.016
引用本文: 李军政, 许祥, 张志辉, 邬娜, 袁志权, 贾潇岳, 李成英, 吴龙, 向颖, 钟理, 李亚斐. 急性冠脉综合征患者住院期间新发房颤预测模型的建立与验证[J]. 中华疾病控制杂志, 2021, 25(2): 204-210. doi: 10.16462/j.cnki.zhjbkz.2021.02.016
LI Jun-zheng, XU Xiang, ZHANG Zhi-hui, WU Na, YUAN Zhi-quan, JIA Xiao-yue, LI Cheng-ying, WU Long, XIANG Ying, ZHONG Li, LI Ya-fei. Establishment and validation of a predictive model for new onset atrial fibrillation in patients with acute coronary syndrome during hospitalization[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(2): 204-210. doi: 10.16462/j.cnki.zhjbkz.2021.02.016
Citation: LI Jun-zheng, XU Xiang, ZHANG Zhi-hui, WU Na, YUAN Zhi-quan, JIA Xiao-yue, LI Cheng-ying, WU Long, XIANG Ying, ZHONG Li, LI Ya-fei. Establishment and validation of a predictive model for new onset atrial fibrillation in patients with acute coronary syndrome during hospitalization[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(2): 204-210. doi: 10.16462/j.cnki.zhjbkz.2021.02.016

急性冠脉综合征患者住院期间新发房颤预测模型的建立与验证

doi: 10.16462/j.cnki.zhjbkz.2021.02.016
基金项目: 

国家自然科学基金青年科学基金项目 81502883

详细信息
    通讯作者:

    LI Ya-fei, E-mail: liyafei2008@hotmail.com

  • 中图分类号: R181.23

Establishment and validation of a predictive model for new onset atrial fibrillation in patients with acute coronary syndrome during hospitalization

Funds: 

Youth Science Foundation Project of National Natural Science Foundation of China 81502883

  • 摘要:   目的  建立急性冠脉综合征患者入院期间新发房颤预测模型,为入院早期发现高风险人群、及时采取干预措施提供科学依据。  方法  回顾性收集2010年1月至2019年12月在某三甲医院心内科住院、符合纳入排除标准的急性冠脉综合征患者资料,共1 915例患者,随机分为建模组和验证组,在建模组中运用多元Logistic回归分析模型和筛选出院内新发房颤的独立危险因素,建立回归预测模型,构建风险评分列线图,并在验证组中进行验证。采用受试者工作特征曲线(receiver operating characteristic curve, ROC)和曲线下面积(area under curve, AUC)以及Hosmer-lemoshow拟合优度检验和校准曲线分别评价模型的区分能力和校准度。  结果  建模组共纳入急性冠脉综合征患者958例,其中新发房颤62例;验证组纳入957例,其中新发房颤65例。建模组中共纳入7个指标,分别为:年龄、入院时心率、心衰Killip分级、N末端脑钠肽前体(N-terminal pro-brain natriuretic peptide, NT-proBNP)水平、左心房横径、右心房横径和中性粒细胞计数,以此建立回归预测模型。建模组的AUC为0.91(95% CI: 0.88~0.94);验证组的AUC为0.86(95% CI: 0.81~0.91)。校准曲线图和拟合优度检验(建模组和验证组均有P>0.05)显示模型具有较好的校准度。  结论  本研究成功构建了急性冠脉综合征患者院内新发房颤的预测模型,具有较好区分度和校准度,利用列线图可方便直观地预测患者的房颤风险,为临床早期防治和改善预后提供依据。
  • 图  1  急性冠脉综合征患者院内新发房颤风险评分列线图

    Figure  1.  Nomogram of risk score of new onset atrial fibrillation in patients with acute coronary syndrome

    图  2  建模组(左)与验证组(右)ROC曲线

    Figure  2.  ROC curve of modeling group (left) and validation group (right)

    图  3  建模组(左)与验证组(右)Hosmer-lemoshow校准曲线

    Figure  3.  Hosmer-lemoshow calibration curve of modeling group (left) and validation group (right)

    表  1  建模组与验证组病例的基线特征[M(P25P75)]

    Table  1.   Baseline characteristics of patients in modeling and validation group [M(P25, P75)]

    变量 建模组 验证组
    未发生房颤 发生房颤 Z/χ2 P 未发生房颤 发生房颤 Z/χ2 P
    人口学特征
      年龄(岁) 67.0(59.0, 74.0) 74.5(70.0, 80.0) -5.787a 0.000 67.0(59.0, 74.0) 78.0(71.0, 81.0) -7.126a 0.000
      性别[n(%)] 0.079b 0.780 1.533b 0.220
        男性 606(67.6) 43(69.4) 563(63.1) 46(70.8)
        女性 290(32.4) 19(30.6) 329(36.9) 19(29.2)
      BMI(kg/m2) 24.4(22.2, 26.7) 24.5(21.9, 27.1) -0.049a 0.960 24.4(22.4, 26.5) 24.6(22.9, 26.7) -0.501a 0.620
        吸烟[n(%)] 473(52.8) 34(54.8) 0.098b 0.750 440(49.3) 34(52.3) 0.215b 0.640
        饮酒[n(%)] 360(40.2) 27(43.5) 0.274b 0.600 334(37.4) 25(38.5) 0.268b 0.870
    入院检查
      入院心率(次/min) 77.5(70.0, 86.5) 90.0(78.0, 102.0) -4.951a 0.000 78.0(71.0, 88.0) 87.0(78.0, 104.0) -4.629a 0.000
      SPB(mm Hg) 130.0(118.0, 144.5) 130.0(114.0, 149.0) 0.034a 0.970 130.0(118.0, 145.0) 130.0(110.0, 140.0) 1.520a 0.130
      DPB(mm Hg) 78.0(70.0, 87.0) 77.0(66.0, 84.0) 0.925a 0.360 78.0(70.0, 85.0) 72.0(66.0, 80.0) 2.181a 0.030
      心衰分级[n(%)] 32.357b 0.000 12.476b 0.000
         < 2级 630(70.3) 22(35.5) 615(68.9) 31(47.7)
        ≥2级 266(29.7) 40(64.5) 277(31.1) 34(52.3)
    合并疾病[n(%)]
      高血压 559(62.4) 44(71.0) 1.830b 0.180 574(64.3) 43(66.2) 0.086b 0.770
      糖尿病 327(36.5) 28(45.2) 1.867b 0.170 331(37.1) 26(40.0) 0.217b 0.640
      高血脂 213(23.8) 11(17.7) 1.177b 0.280 203(22.8) 6(9.2) 6.495b 0.010
      心肌病 20(2.2) 3(4.8) 0.753c 0.386 23(2.6) 2(3.1) < 0.01c 1.000
      陈旧性脑梗死 68(7.6) 11(17.7) 7.900b 0.010 67(7.5) 13(20.0) 12.335b 0.000
      慢性阻塞性肺疾病 22(2.5) 1(1.6) < 0.01c 1.000 15(1.7) 3(4.6) 1.459c 0.227
      慢性肾功能障碍 22(2.5) 6(9.7) 8.266c 0.004 18(2.0) 7(10.8) 14.960c 0.000
    药物治疗[n(%)]
      他汀类药物 808(90.2) 50(80.6) 5.637b 0.020 814(91.3) 51(78.5) 11.413b 0.001
      阿司匹林 677(75.6) 43(69.4) 1.195b 0.270 703(78.8) 41(63.1) 8.669b 0.003
      氯吡格雷 649(72.4) 43(69.4) 0.274b 0.600 666(74.7) 51(78.5) 0.465b 0.500
      β受体抑制剂 556(62.1) 35(56.5) 0.770b 0.380 527(59.1) 33(50.8) 1.724b 0.190
      血管紧张素转化酶抑制剂 357(39.8) 28(45.2) 0.682b 0.410 363(40.7) 23(35.4) 0.710b 0.400
        实验室检查
      肌钙蛋白阳性[n(%)] 325(36.3) 24(38.7) 0.149b 0.700 287(32.2) 26(40.0) 1.686b 0.190
      NT-proBNP(pg/ml) 154.4(65.1, 441.6) 1 456.0(770.2, 2 730.0) -9.139a 0.000 177.2(80.1, 516.8) 1 100.0(467.3, 2 340.0) -7.440a 0.000
      超敏C反应蛋白(mg/L) 2.8(1.0, 9.3) 6.5(1.9, 13.2) -3.564a 0.000 2.8(1.1, 9.8) 4.7(1.6, 11.2) -2.071a 0.040
      D-二聚体(mg/L) 0.3(0.2, 0.9) 0.7(0.3, 2.2) -3.614a 0.000 0.3(0.2, 0.9) 1.0(0.4, 11.3) -5.248a 0.000
      纤维蛋白原(g/L) 2.8(2.4, 3.4) 3.1(2.5, 3.9) -1.966a 0.050 2.9(2.4, 3.4) 2.9(2.5, 3.5) -0.472a 0.640
      白细胞(109/L) 6.7(5.4, 8.2) 7.7(6.0, 9.7) -2.986a 0.003 6.5(5.3, 8.3) 7.3(5.7, 10.0) -2.618a 0.009
      中性粒细胞(109/L) 4.3(3.2, 5.8) 5.1(3.8, 7.5) -2.850a 0.004 4.1(3.2, 5.8) 5.3(3.7, 7.6) -2.878a 0.004
      淋巴细胞(109/L) 1.5(1.1, 1.9) 1.5(1.2, 1.9) -0.067a 0.950 1.5(1.2, 1.9) 1.4(1.1, 1.8) 1.444a 0.150
      单核细胞(109/L) 0.4(0.3, 0.6) 0.5(0.4, 0.8) -2.642a 0.008 0.4(0.3, 0.6) 0.6(0.4, 0.8) -3.202a 0.001
      血小板(109/L) 182.0(148.0, 223.0) 160.5(138.0, 201.0) 2.356a 0.020 177.0(145.0, 216.0) 153.0(125.0, 192.0) 2.807a 0.005
      血红蛋白(g/L) 133.0(120.0, 144.0) 129.5(120.0, 139.0) 1.199a 0.230 132.0(120.0, 143.5) 132.0(119.0, 142.0) 0.557a 0.580
      甘油三酯(mmol/L) 1.4(1.0, 2.0) 1.3(0.9, 1.9) 0.867a 0.390 1.4(1.0, 2.0) 1.1(0.9, 1.8) 2.826a 0.005
      总胆固醇(mmol/L) 4.3(3.6, 5.1) 3.7(3.3, 4.6) 3.094a 0.002 4.4(3.6, 5.2) 3.8(3.0, 4.4) 4.056a 0.000
      总蛋白(g/L) 65.9(61.8, 69.4) 64.8(61.9, 68.9) 0.821a 0.410 65.7(61.7, 70.1) 64.7(60.1, 69.0) 1.440a 0.150
      白蛋白(g/L) 38.6(36.3, 40.8) 37.8(33.9, 39.6) 2.770a 0.006 38.7(36.5, 41.0) 37.6(34.4, 39.5) 3.010a 0.003
      球蛋白(g/L) 27.2(24.7, 29.8) 28.2(25.6, 30.5) -1.813a 0.070 27.0(24.3, 30.0) 27.0(24.0, 29.9) -0.032a 0.9700
      肾小球滤过率
    (ml·min-1·l-1)
    84.4(63.0, 95.2) 64.1(50.2, 84.0) 4.338a 0.000 82.6(62.7, 94.0) 56.5(40.9, 76.5) 6.004a 0.000
      血肌酐(μmol/l) 74.0(63.0, 88.1) 86.9(75.0, 110.0) -4.280a 0.000 73.7(62.7, 89.0) 92.2(72.7, 124.5) -5.019a 0.000
    超声心动图检查
      左心房横径(mm) 36.0(33.0, 40.0) 40.0(38.0, 44.0) -7.027a 0.000 36.5(33.0, 40.0) 42.0(39.0, 47.0) -7.313a 0.000
      右心房横径(mm) 34.0(31.0, 37.0) 38.0(35.0, 43.0) -6.542a 0.000 34.0(31.0, 37.0) 37.0(34.0, 43.0) -5.288a 0.000
      左心室射血分数(%) 60.0(56.0, 65.0) 58.0(50.0, 65.0) 1.868a 0.060 61.0(55.0, 66.0) 56.0(45.0, 63.0) 3.316a 0.001
    PCI治疗d [n(%)] 336(37.5) 19(30.6) 1.168b 0.280 310(34.8) 16(24.6) 2.772b 0.100
    注:a:Wilcoxon秩和检验;b:Pearson卡方检验;c:连续校正的Pearson卡方检验;dPCI治疗:经皮冠状动脉介入(percutaneous coronary intervention)治疗。
    下载: 导出CSV

    表  2  纳入模型的预测因子及统计检验结果

    Table  2.   Prediction factors and statistical results included in the model

    截距和变量 β OR (95% CI)值 P
    截距 -16.545 < 0.001
    年龄(岁) 0.043 1.044(1.011~1.078) 0.008
    左心房横径(mm) 0.071 1.074(1.018~1.132) 0.008
    右心房横径(mm) 0.098 1.102(1.040~1.169) 0.001
    心衰分级
       < 2 1.000
      ≥2 0.678 1.970(1.049~3.701) 0.035
    入院时心率(次/min)
       < 85 1.000
      ≥85 0.995 2.705(1.434~5.103) 0.002
    NT-proBNP(log10转换) 1.202 3.328(1.903~5.821) < 0.001
    中性粒细胞计数 0.098 1.103(1.003~1.214) 0.044
    下载: 导出CSV
  • [1] 段文涛, 张峰, 史东, 等.心房颤动相关危险因素及药物治疗研究新进展[J].武汉大学学报(医学版), 2020, 41(1):164-168. DOI: 10.14188/j.1671-8852.2018.0771.

    Duan WT, Zhang F, Shi D, et al. Recent advances in risk factors and drug therapy of atrial fibrillation[J]. Med J Wuhan University, 2020, 41(1):164-168. DOI: 10.14188/j.1671-8852.2018.0771.
    [2] Smith JN, Negrelli JM, Manek MB, et al. Diagnosis and management of acute coronary syndrome: an evidence-based update[J]. J Am Board Fam Med, 2015, 28(2):283-293. DOI: 10.3122/jabfm.2015.02.140189.
    [3] González-Pacheco H, Márquez MF, Arias-Mendoza A, et al. Clinical features and in-hospital mortality associated with different types of atrial fibrillation in patients with acute coronary syndrome with and without ST elevation[J]. J Cardiol, 2015, 66(2):148-154. DOI: 10.1016/j.jjcc.2014.11.001.
    [4] Wang CL, Chen PC, Juang HT, et al. Adverse outcomes associated with pre-existing and new-onset atrial fibrillation in patients with acute coronary syndrome: a retrospective cohort study[J]. Cardiol Ther, 2019, 8(1):117-127. DOI: 10.1007/s40119-019-0136-3.
    [5] Galvão Braga C, Ramos V, Vieira C, et al. New-onset atrial fibrillation during acute coronary syndromes: predictors and prognosis[J]. Rev Port Cardiol, 2014, 33(5):281-287. DOI: 10.1016/j.repc.2013.10.017.
    [6] Almendro-Delia M, Valle-Caballero MJ, Garcia-Rubira JC, et al. Prognostic impact of atrial fibrillation in acute coronary syndromes: results from the ARIAM registry[J]. Eur Heart Acute Cardiovasc Care, 2014, 3(2):141-148. DOI: 10.1177/2048872613517370.
    [7] Nagai M, Itoh T, Ishida M, et al. New-onset atrial fibrillation in patients with acute coronary syndrome may be associated with worse prognosis and future heart failure[J]. J Arrhythm, 2019, 35(2):182-189. DOI: 10.1002/joa3.12154.
    [8] Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction[J]. J Am Col Cardiol, 2012, 60(16):1581-1598. DOI: 10.1016/j.jacc.2012.08.001.
    [9] Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2010, 31(19):2369-2429. DOI: 10.1093/eurheartj/ehq278.
    [10] Dorje T, Wang X, Shao M, et al. Plasma N-terminal pro-brain natriuretic peptide levels predict new-onset atrial fibrillation in patients with acute myocardial infarction[J]. Int J Cardiol, 2013, 168(3):3135-3137. DOI: 10.1016/j.ijcard.2013.04.032.
    [11] Zhang H, Dong P, Yang X, et al. Prognostic indicators of new onset atrial fibrillation in patients with acute coronary syndrome[J]. Clin Cardiol, 2020, 43(6):647-651. DOI: 10.1002/clc.23363.
    [12] Ulus T, Isgandarov K, Yilmaz AS, et al. Predictors of new-onset atrial fibrillation in elderly patients with acute coronary syndrome undergoing percutaneous coronary intervention[J]. Aging Clin Exp Res, 2018, 30(12):1475-1482. DOI: 10.1007/s40520-018-0926-9.
    [13] Holl MJ, Van Den Bos EJ, Van Domburg RT, et al. NT-proBNP is associated with mortality and adverse cardiac events in patients with atrial fibrillation presenting to the emergency department[J]. Clini Cardiol, 2018, 41(3):400-405. DOI: 10.1002/clc.22883.
    [14] Mazzone A, Scalese M, Paradossi U, et al. Development and validation of a risk stratification score for new-onset atrial fibrillation in STEMI patients undergoing primary percutaneous coronary intervention[J]. Int J Clini Prac, 2018, 72(4):e13087. DOI: 10.1111/ijcp.13087.
    [15] Jensen MT, Pereira M, Araujo C, et al. Heart rate at admission is a predictor of in-hospital mortality in patients with acute coronary syndromes: results from 58 European hospitals: The European Hospital Benchmarking by Outcomes in acute coronary syndrome Processes study[J]. Eur Heart J Acute Cardiovasc Care, 2018, 7(2):49-57. DOI: 10.1177/2048872616672077.
    [16] He J, Yang Y, Zhang G, et al. Clinical risk factors for new-onset atrial fibrillation in acute myocardial infarction: a systematic review and meta-analysis[J]. Med, 2019, 98(26):e15960. DOI: 10.1097/md.0000000000015960.
    [17] Sepehri Shamloo A, Bollmann A, Dagres N, et al. Natriuretic peptides: biomarkers for atrial fibrillation management[J]. Clin Res in Cardiol, 2020, 109(8):957-966. DOI: 10.1007/s00392-020-01608-x.
    [18] Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration[J]. Ann Int med, 2015, 162(1):W1-W73. DOI: 10.7326/m14-0698.
    [19] Karabaǧ Y, Rencuzogullari I, Çaǧdaš M, et al. Association between BNP levels and new-onset atrial fibrillation: a propensity score approach[J]. Herz, 2018, 43(6):548-554. DOI: 10.1007/s00059-017-4598-6.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  685
  • HTML全文浏览量:  210
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2021-01-02
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回