Establishment and validation of a predictive model for new onset atrial fibrillation in patients with acute coronary syndrome during hospitalization
-
摘要:
目的 建立急性冠脉综合征患者入院期间新发房颤预测模型,为入院早期发现高风险人群、及时采取干预措施提供科学依据。 方法 回顾性收集2010年1月至2019年12月在某三甲医院心内科住院、符合纳入排除标准的急性冠脉综合征患者资料,共1 915例患者,随机分为建模组和验证组,在建模组中运用多元Logistic回归分析模型和筛选出院内新发房颤的独立危险因素,建立回归预测模型,构建风险评分列线图,并在验证组中进行验证。采用受试者工作特征曲线(receiver operating characteristic curve, ROC)和曲线下面积(area under curve, AUC)以及Hosmer-lemoshow拟合优度检验和校准曲线分别评价模型的区分能力和校准度。 结果 建模组共纳入急性冠脉综合征患者958例,其中新发房颤62例;验证组纳入957例,其中新发房颤65例。建模组中共纳入7个指标,分别为:年龄、入院时心率、心衰Killip分级、N末端脑钠肽前体(N-terminal pro-brain natriuretic peptide, NT-proBNP)水平、左心房横径、右心房横径和中性粒细胞计数,以此建立回归预测模型。建模组的AUC为0.91(95% CI: 0.88~0.94);验证组的AUC为0.86(95% CI: 0.81~0.91)。校准曲线图和拟合优度检验(建模组和验证组均有P>0.05)显示模型具有较好的校准度。 结论 本研究成功构建了急性冠脉综合征患者院内新发房颤的预测模型,具有较好区分度和校准度,利用列线图可方便直观地预测患者的房颤风险,为临床早期防治和改善预后提供依据。 Abstract:Objective To establish a predictive model of new onset atrial fibrillation in patients with acute coronary syndrome (ACS) during admission, so as to provide scientific basis for early detection of high-risk patients and timely intervention measures. Methods A retrospective cohort study was conducted among 1 915 patients with ACS who were admitted to the Department of Cardiology of a large general hospital between January 2010 and December 2019. Patients were randomly divided into two groups: model group and validation group. In the model group, a multivariate Logistic regression analysis model was used to screen the independent factors associated with new onset atrial fibrillation. Regression prediction model and nomogram were established, and validated in the validation group. Area under curve (AUC) of receiver operating characteristic curve (ROC) and Hosmer-lemoshow test were used to evaluate the discrimination and calibration of the model, respectively. Results There were 958 cases in the model group comprising 62 new onset atrial fibrillation cases, and 957 cases in the validation group comprising 65 new onset atrial fibrillation cases. In the model group, seven indicators were independently associated with atrial fibrillation, including age, heart rate at admission, Killip classification of heart failure, N-terminal pro-brain natriuretic peptide (NT-proBNP) level, left atrial diameter, right atrial diameter and neutrophil count. In the modeling group, the AUC was 0.91 (95% CI: 0.88-0.94) in model group and 0.86 (95% CI: 0.81-0.91) in validation group. Calibration plot and goodness of fit test (in modeling group and validation group, P>0.05) indicated that the prediction model had a good calibration ability. Conclusions In this study, the prediction model of new onset atrial fibrillation in patients with acute coronary syndrome was successfully constructed, which has a good discrimination and calibration, the nomogram could conveniently be used and intuitively predict the risk of atrial fibrillation, thus provides foundation for early intervention and improvement of prognosis in clinical practice. -
Key words:
- Acute coronary syndrome /
- New onset atrial fibrillation /
- Prediction model /
- Model validation /
- Nomogram
-
表 1 建模组与验证组病例的基线特征[M(P25,P75)]
Table 1. Baseline characteristics of patients in modeling and validation group [M(P25, P75)]
变量 建模组 验证组 未发生房颤 发生房颤 Z/χ2值 P值 未发生房颤 发生房颤 Z/χ2值 P值 人口学特征 年龄(岁) 67.0(59.0, 74.0) 74.5(70.0, 80.0) -5.787a 0.000 67.0(59.0, 74.0) 78.0(71.0, 81.0) -7.126a 0.000 性别[n(%)] 0.079b 0.780 1.533b 0.220 男性 606(67.6) 43(69.4) 563(63.1) 46(70.8) 女性 290(32.4) 19(30.6) 329(36.9) 19(29.2) BMI(kg/m2) 24.4(22.2, 26.7) 24.5(21.9, 27.1) -0.049a 0.960 24.4(22.4, 26.5) 24.6(22.9, 26.7) -0.501a 0.620 吸烟[n(%)] 473(52.8) 34(54.8) 0.098b 0.750 440(49.3) 34(52.3) 0.215b 0.640 饮酒[n(%)] 360(40.2) 27(43.5) 0.274b 0.600 334(37.4) 25(38.5) 0.268b 0.870 入院检查 入院心率(次/min) 77.5(70.0, 86.5) 90.0(78.0, 102.0) -4.951a 0.000 78.0(71.0, 88.0) 87.0(78.0, 104.0) -4.629a 0.000 SPB(mm Hg) 130.0(118.0, 144.5) 130.0(114.0, 149.0) 0.034a 0.970 130.0(118.0, 145.0) 130.0(110.0, 140.0) 1.520a 0.130 DPB(mm Hg) 78.0(70.0, 87.0) 77.0(66.0, 84.0) 0.925a 0.360 78.0(70.0, 85.0) 72.0(66.0, 80.0) 2.181a 0.030 心衰分级[n(%)] 32.357b 0.000 12.476b 0.000 < 2级 630(70.3) 22(35.5) 615(68.9) 31(47.7) ≥2级 266(29.7) 40(64.5) 277(31.1) 34(52.3) 合并疾病[n(%)] 高血压 559(62.4) 44(71.0) 1.830b 0.180 574(64.3) 43(66.2) 0.086b 0.770 糖尿病 327(36.5) 28(45.2) 1.867b 0.170 331(37.1) 26(40.0) 0.217b 0.640 高血脂 213(23.8) 11(17.7) 1.177b 0.280 203(22.8) 6(9.2) 6.495b 0.010 心肌病 20(2.2) 3(4.8) 0.753c 0.386 23(2.6) 2(3.1) < 0.01c 1.000 陈旧性脑梗死 68(7.6) 11(17.7) 7.900b 0.010 67(7.5) 13(20.0) 12.335b 0.000 慢性阻塞性肺疾病 22(2.5) 1(1.6) < 0.01c 1.000 15(1.7) 3(4.6) 1.459c 0.227 慢性肾功能障碍 22(2.5) 6(9.7) 8.266c 0.004 18(2.0) 7(10.8) 14.960c 0.000 药物治疗[n(%)] 他汀类药物 808(90.2) 50(80.6) 5.637b 0.020 814(91.3) 51(78.5) 11.413b 0.001 阿司匹林 677(75.6) 43(69.4) 1.195b 0.270 703(78.8) 41(63.1) 8.669b 0.003 氯吡格雷 649(72.4) 43(69.4) 0.274b 0.600 666(74.7) 51(78.5) 0.465b 0.500 β受体抑制剂 556(62.1) 35(56.5) 0.770b 0.380 527(59.1) 33(50.8) 1.724b 0.190 血管紧张素转化酶抑制剂 357(39.8) 28(45.2) 0.682b 0.410 363(40.7) 23(35.4) 0.710b 0.400 实验室检查 肌钙蛋白阳性[n(%)] 325(36.3) 24(38.7) 0.149b 0.700 287(32.2) 26(40.0) 1.686b 0.190 NT-proBNP(pg/ml) 154.4(65.1, 441.6) 1 456.0(770.2, 2 730.0) -9.139a 0.000 177.2(80.1, 516.8) 1 100.0(467.3, 2 340.0) -7.440a 0.000 超敏C反应蛋白(mg/L) 2.8(1.0, 9.3) 6.5(1.9, 13.2) -3.564a 0.000 2.8(1.1, 9.8) 4.7(1.6, 11.2) -2.071a 0.040 D-二聚体(mg/L) 0.3(0.2, 0.9) 0.7(0.3, 2.2) -3.614a 0.000 0.3(0.2, 0.9) 1.0(0.4, 11.3) -5.248a 0.000 纤维蛋白原(g/L) 2.8(2.4, 3.4) 3.1(2.5, 3.9) -1.966a 0.050 2.9(2.4, 3.4) 2.9(2.5, 3.5) -0.472a 0.640 白细胞(109/L) 6.7(5.4, 8.2) 7.7(6.0, 9.7) -2.986a 0.003 6.5(5.3, 8.3) 7.3(5.7, 10.0) -2.618a 0.009 中性粒细胞(109/L) 4.3(3.2, 5.8) 5.1(3.8, 7.5) -2.850a 0.004 4.1(3.2, 5.8) 5.3(3.7, 7.6) -2.878a 0.004 淋巴细胞(109/L) 1.5(1.1, 1.9) 1.5(1.2, 1.9) -0.067a 0.950 1.5(1.2, 1.9) 1.4(1.1, 1.8) 1.444a 0.150 单核细胞(109/L) 0.4(0.3, 0.6) 0.5(0.4, 0.8) -2.642a 0.008 0.4(0.3, 0.6) 0.6(0.4, 0.8) -3.202a 0.001 血小板(109/L) 182.0(148.0, 223.0) 160.5(138.0, 201.0) 2.356a 0.020 177.0(145.0, 216.0) 153.0(125.0, 192.0) 2.807a 0.005 血红蛋白(g/L) 133.0(120.0, 144.0) 129.5(120.0, 139.0) 1.199a 0.230 132.0(120.0, 143.5) 132.0(119.0, 142.0) 0.557a 0.580 甘油三酯(mmol/L) 1.4(1.0, 2.0) 1.3(0.9, 1.9) 0.867a 0.390 1.4(1.0, 2.0) 1.1(0.9, 1.8) 2.826a 0.005 总胆固醇(mmol/L) 4.3(3.6, 5.1) 3.7(3.3, 4.6) 3.094a 0.002 4.4(3.6, 5.2) 3.8(3.0, 4.4) 4.056a 0.000 总蛋白(g/L) 65.9(61.8, 69.4) 64.8(61.9, 68.9) 0.821a 0.410 65.7(61.7, 70.1) 64.7(60.1, 69.0) 1.440a 0.150 白蛋白(g/L) 38.6(36.3, 40.8) 37.8(33.9, 39.6) 2.770a 0.006 38.7(36.5, 41.0) 37.6(34.4, 39.5) 3.010a 0.003 球蛋白(g/L) 27.2(24.7, 29.8) 28.2(25.6, 30.5) -1.813a 0.070 27.0(24.3, 30.0) 27.0(24.0, 29.9) -0.032a 0.9700 肾小球滤过率
(ml·min-1·l-1)84.4(63.0, 95.2) 64.1(50.2, 84.0) 4.338a 0.000 82.6(62.7, 94.0) 56.5(40.9, 76.5) 6.004a 0.000 血肌酐(μmol/l) 74.0(63.0, 88.1) 86.9(75.0, 110.0) -4.280a 0.000 73.7(62.7, 89.0) 92.2(72.7, 124.5) -5.019a 0.000 超声心动图检查 左心房横径(mm) 36.0(33.0, 40.0) 40.0(38.0, 44.0) -7.027a 0.000 36.5(33.0, 40.0) 42.0(39.0, 47.0) -7.313a 0.000 右心房横径(mm) 34.0(31.0, 37.0) 38.0(35.0, 43.0) -6.542a 0.000 34.0(31.0, 37.0) 37.0(34.0, 43.0) -5.288a 0.000 左心室射血分数(%) 60.0(56.0, 65.0) 58.0(50.0, 65.0) 1.868a 0.060 61.0(55.0, 66.0) 56.0(45.0, 63.0) 3.316a 0.001 PCI治疗d [n(%)] 336(37.5) 19(30.6) 1.168b 0.280 310(34.8) 16(24.6) 2.772b 0.100 注:a:Wilcoxon秩和检验;b:Pearson卡方检验;c:连续校正的Pearson卡方检验;dPCI治疗:经皮冠状动脉介入(percutaneous coronary intervention)治疗。 表 2 纳入模型的预测因子及统计检验结果
Table 2. Prediction factors and statistical results included in the model
截距和变量 β值 OR (95% CI)值 P值 截距 -16.545 < 0.001 年龄(岁) 0.043 1.044(1.011~1.078) 0.008 左心房横径(mm) 0.071 1.074(1.018~1.132) 0.008 右心房横径(mm) 0.098 1.102(1.040~1.169) 0.001 心衰分级 < 2 1.000 ≥2 0.678 1.970(1.049~3.701) 0.035 入院时心率(次/min) < 85 1.000 ≥85 0.995 2.705(1.434~5.103) 0.002 NT-proBNP(log10转换) 1.202 3.328(1.903~5.821) < 0.001 中性粒细胞计数 0.098 1.103(1.003~1.214) 0.044 -
[1] 段文涛, 张峰, 史东, 等.心房颤动相关危险因素及药物治疗研究新进展[J].武汉大学学报(医学版), 2020, 41(1):164-168. DOI: 10.14188/j.1671-8852.2018.0771.Duan WT, Zhang F, Shi D, et al. Recent advances in risk factors and drug therapy of atrial fibrillation[J]. Med J Wuhan University, 2020, 41(1):164-168. DOI: 10.14188/j.1671-8852.2018.0771. [2] Smith JN, Negrelli JM, Manek MB, et al. Diagnosis and management of acute coronary syndrome: an evidence-based update[J]. J Am Board Fam Med, 2015, 28(2):283-293. DOI: 10.3122/jabfm.2015.02.140189. [3] González-Pacheco H, Márquez MF, Arias-Mendoza A, et al. Clinical features and in-hospital mortality associated with different types of atrial fibrillation in patients with acute coronary syndrome with and without ST elevation[J]. J Cardiol, 2015, 66(2):148-154. DOI: 10.1016/j.jjcc.2014.11.001. [4] Wang CL, Chen PC, Juang HT, et al. Adverse outcomes associated with pre-existing and new-onset atrial fibrillation in patients with acute coronary syndrome: a retrospective cohort study[J]. Cardiol Ther, 2019, 8(1):117-127. DOI: 10.1007/s40119-019-0136-3. [5] Galvão Braga C, Ramos V, Vieira C, et al. New-onset atrial fibrillation during acute coronary syndromes: predictors and prognosis[J]. Rev Port Cardiol, 2014, 33(5):281-287. DOI: 10.1016/j.repc.2013.10.017. [6] Almendro-Delia M, Valle-Caballero MJ, Garcia-Rubira JC, et al. Prognostic impact of atrial fibrillation in acute coronary syndromes: results from the ARIAM registry[J]. Eur Heart Acute Cardiovasc Care, 2014, 3(2):141-148. DOI: 10.1177/2048872613517370. [7] Nagai M, Itoh T, Ishida M, et al. New-onset atrial fibrillation in patients with acute coronary syndrome may be associated with worse prognosis and future heart failure[J]. J Arrhythm, 2019, 35(2):182-189. DOI: 10.1002/joa3.12154. [8] Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction[J]. J Am Col Cardiol, 2012, 60(16):1581-1598. DOI: 10.1016/j.jacc.2012.08.001. [9] Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2010, 31(19):2369-2429. DOI: 10.1093/eurheartj/ehq278. [10] Dorje T, Wang X, Shao M, et al. Plasma N-terminal pro-brain natriuretic peptide levels predict new-onset atrial fibrillation in patients with acute myocardial infarction[J]. Int J Cardiol, 2013, 168(3):3135-3137. DOI: 10.1016/j.ijcard.2013.04.032. [11] Zhang H, Dong P, Yang X, et al. Prognostic indicators of new onset atrial fibrillation in patients with acute coronary syndrome[J]. Clin Cardiol, 2020, 43(6):647-651. DOI: 10.1002/clc.23363. [12] Ulus T, Isgandarov K, Yilmaz AS, et al. Predictors of new-onset atrial fibrillation in elderly patients with acute coronary syndrome undergoing percutaneous coronary intervention[J]. Aging Clin Exp Res, 2018, 30(12):1475-1482. DOI: 10.1007/s40520-018-0926-9. [13] Holl MJ, Van Den Bos EJ, Van Domburg RT, et al. NT-proBNP is associated with mortality and adverse cardiac events in patients with atrial fibrillation presenting to the emergency department[J]. Clini Cardiol, 2018, 41(3):400-405. DOI: 10.1002/clc.22883. [14] Mazzone A, Scalese M, Paradossi U, et al. Development and validation of a risk stratification score for new-onset atrial fibrillation in STEMI patients undergoing primary percutaneous coronary intervention[J]. Int J Clini Prac, 2018, 72(4):e13087. DOI: 10.1111/ijcp.13087. [15] Jensen MT, Pereira M, Araujo C, et al. Heart rate at admission is a predictor of in-hospital mortality in patients with acute coronary syndromes: results from 58 European hospitals: The European Hospital Benchmarking by Outcomes in acute coronary syndrome Processes study[J]. Eur Heart J Acute Cardiovasc Care, 2018, 7(2):49-57. DOI: 10.1177/2048872616672077. [16] He J, Yang Y, Zhang G, et al. Clinical risk factors for new-onset atrial fibrillation in acute myocardial infarction: a systematic review and meta-analysis[J]. Med, 2019, 98(26):e15960. DOI: 10.1097/md.0000000000015960. [17] Sepehri Shamloo A, Bollmann A, Dagres N, et al. Natriuretic peptides: biomarkers for atrial fibrillation management[J]. Clin Res in Cardiol, 2020, 109(8):957-966. DOI: 10.1007/s00392-020-01608-x. [18] Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration[J]. Ann Int med, 2015, 162(1):W1-W73. DOI: 10.7326/m14-0698. [19] Karabaǧ Y, Rencuzogullari I, Çaǧdaš M, et al. Association between BNP levels and new-onset atrial fibrillation: a propensity score approach[J]. Herz, 2018, 43(6):548-554. DOI: 10.1007/s00059-017-4598-6. -