Metals source analysis and ecological risk evaluation of atmospheric PM2.5 in a city of North China
-
摘要:
目的 了解华北某市主城区大气细颗粒物(fine particulate matter, PM2.5)中金属的来源及其浓度的季节性差异,并评价金属的污染程度和生态危害程度。 方法 采集2017年3月―2018年2月的大气PM2.5样品,使用电感耦合等离子体质谱仪对大气PM2.5中金属元素进行测定,采用富集因子法和主成分分析法解析元素来源,采用地累积指数法和潜在生态风险指数法评估元素污染状况。 结果 该市大气PM2.5中金属元素浓度具有季节性差异,表现出冬季高于春夏秋季的特征。富集因子法分析结果表明,四季中锑、硒、镉属于极强富集金属,主要受人为活动影响;铬、镍、铍属于无富集金属,来源自然源。主成分分析结果显示,大气PM2.5中金属污染源主要有交通和工业生产复合污染源、燃烧活动源、燃烧和自然复合污染源。污染程度评价显示,四季中铬、镍、铍可认为无污染;砷、锑、硒、镉、铊、汞、铅的污染程度在中度及以上,但季节变化特征不一致。生态危害评价结果表明,砷、铬、镍、铊、汞、铅属于轻微危害,镉元素属于极强危害;综合危害程度属于很强危害。 结论 该市主城区大气PM2.5中金属污染主要来源交通、工业生产、燃烧等人为活动;部分元素的污染程度以冬季最为严重,且具有潜在生态危害。因此,冬季应加强对PM2.5的治理及防护。 Abstract:Objective To investigate the seasonal differences and sources of metal in PM2.5 in the main urban area of a city in North China, and to evaluate the degree of pollution and ecological harm. Methods Atmospheric PM2.5 samples were collected from March 2017 to February 2018. The content of metal elements were detected by inductively coupled plasma mass spectrometry (ICP-MS). The source of metals was analyzed by the enrichment factor and principal component analysis (PCA). Pollution degree was evaluated by the geo-accumulation index and the potential ecological risk index. Results The seasonal differences of concentration of metal elements in PM2.5 showed that it was higher in winter than that in another seasons. The results of enrichment factor analysis showed that Sb, Se and Cd were highly enriched in four seasons, so they were mainly affected by human activities, and Cr, Ni, Be were non-enrichment which mainly from nature. The results of PCA showed that metals in PM2.5 were mainly from traffic and industrial composite pollution sources, combustion activity sources, and burning and natural composite pollution sources. The results of pollution degree showed that Cr, Ni and Be could be considered as pollution-free in four seasons, and As, Sb, Se, Cd, Tl, Hg and Pb were in a moderate or higher pollution levels but there was no uniform seasonal variation. The results of potential ecological risk assessment showed that As, Cr, Ni, Tl, Hg, Pb were in slight level, and Cd was stronger than others, but the comprehensive potential ecological risk of elements was extremely strong. Conclusions The pollution of metal in PM2.5 mainly from traffic, industrial production and burning, etc. The pollution degree was highest in winter and had potential ecological harm. Therefore, we should pay more attention to the control and protection of PM2.5 in winter. -
表 1 Hakanson潜在生态风险指数分级
Table 1. Hakanson potential ecological risk index classification
风险级别(级) Ei RI 生态危害程度 A 0~40 0~150 轻微 B >40~80 >150~300 中等 C >80~160 >300~600 强 D >160~320 >600~1 200 很强 E >320 >1 200 极强 表 2 华北某市四季大气PM2.5中金属元素质量浓度[M(P25, P75)]
Table 2. Concentration of metal elements on PM2.5 in the four seasons in a city of North China [M(P25, P75)]
元素 春季(ng/m3) 夏季(ng/m3) 秋季(ng/m3) 冬季(ng/m3) H值 P值 As 4.42(2.50, 6.74) 5.04(2.99, 8.76) 4.28(1.13, 7.57) 7.70(4.26, 13.90) 7.89 0.048 Sb 3.28(1.89, 4.37) 2.90(1.93, 3.52) 2.95(1.92, 5.07) 5.95(3.65, 9.38) 19.92 < 0.001 Se 4.36(1.84, 5.26) 5.96(3.37, 8.19) 5.89(4.01, 8.58) 5.18(3.33, 10.30) 6.75 0.080 Cd 0.86(0.62, 1.77) 1.47(0.91, 2.23) 1.66(0.58, 2.89) 2.84(2.08, 3.49) 22.78 < 0.001 Cr 2.86(0.60, 9.51) 2.01(0.60, 2.80) 2.81(1.11, 3.24) 4.88(2.73, 8.93) 16.89 0.001 Ni 0.60(0.60, 0.91) 0.60(0.60, 1.75) 0.60(0.60, 1.34) 1.68(0.60, 3.33) 17.57 0.001 Tl 0.30(0.30, 0.91) 0.30(0.30, 0.82) 0.30(0.30, 0.67) 0.46(0.30, 0.92) 3.79 0.285 Be < 0.06 < 0.06 < 0.06 < 0.06 - - Hg < 0.05 < 0.05 < 0.05 0.16(0.09, 0.37) - - Pb 33.20(23.10, 51.85) 38.40(28.25, 49.95) 38.20(24.55, 52.55) 54.90(42.00, 96.73) 18.24 < 0.001 表 3 华北某市大气PM2.5中金属元素在主成分中的载荷值
Table 3. Load values of metal in the principal components of PM2.5 in a city of North China
元素 主因子1 主因子2 主因子3 As 0.11 0.63 0.55 Sb 0.57 0.31 -0.08 Se 0.88 -0.09 -0.14 Cd 0.88 0.02 -0.12 Cr 0.52 0.21 0.51 Ni 0.45 -0.17 0.21 Tl 0.83 -0.90 -0.11 Be 0.17 -0.68 0.26 Hg 0.10 0.35 -0.66 Pb 0.93 -0.08 -0.04 特征值 3.93 1.17 1.15 方差贡献率(%) 39.29 11.74 11.53 累计方差贡献率(%) 39.29 51.03 62.56 表 4 华北某市大气PM2.5中金属元素的潜在生态风险指数
Table 4. Potential ecological risk index of metals on PM2.5 in a city of North China
元素 毒性影响系数 Ei值 RI值 As 10 3.73(2.20~6.60) 715.05 Cd 30 650.00(281.67~918.33) Cr 2 0.08(0.04~0.14) Ni 5 0.10(0.10~0.28) Tl 40 26.67(26.67~68.44) Hg 40 25.00(25.00~90.00) Pb 5 9.47(6.63~12.62) -
[1] 胡稳, 张凌云, 杨广斌, 等. 大气PM2.5重金属污染与居民疾病死亡率关系初探[J]. 黑龙江环境通报, 2018, 42(2): 34-39. DOI: 10.3969/j.issn.1674-263X.2018.02.011.Hu W, Zhang LY, Yang GB, et al. Study on relationship between heavy metals in air PM2.5 and disease mortality of residents[J]. Heilongjiang Environ J, 2018, 42(2): 34-39. DOI: 10.3969/j.issn.1674-263X.2018.02.011. [2] Farina M, Rocha JB, Aschner M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies[J]. Life Sci, 2011, 89(15-16): 555-563. DOI: 10.1016/j.lfs.2011.05.019. [3] 李倩, 周志俊, 张玉彬. 铅对机体免疫系统的毒作用及其机制的研究进展[J]. 环境与职业医学, 2016, 33(5): 523-527. DOI: 10.13213/j.cnki.jeom.2016.15503.Li Q, Zhou ZJ, Zhang YB. Research advances on toxic effects and mechanism of lead on immune system[J]. J Environ Occup Med, 2016, 33(5): 523-527. DOI: 10.13213/j.cnki.jeom.2016.15503. [4] Chen LC, Lippmann M. Effects of metals with in ambient air particulate matter (PM) on human health[J]. Inhal Toxicol, 2009, 21(1): 1-31. DOI: 10.1080/08958370802105405. [5] 中华人民共和国环境保护部. GB 3095-2012环境空气质量标准[S]. 北京: 中国环境科学出版社, 2016.Ministry of Environmental Protection of the People's Republic of China. GB 3095-2012 Ambient air quality standard[S]. Beijing: China Environmental Science Press, 2016. [6] U.S. Environmental Protection Agency. The Clean Air Act Amendments of 1990[EB/OL]. (1990-11-15)[2020-08-05]. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000P3K7.txt. [7] Hieu NT, Lee BK. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea[J]. Atmo Res, 2010, 98(2-4): 526-537. DOI: 10.1016/j.jhazmat.2010.08.050. [8] 刘肖, 左书梅, 张莹, 等. 华北某市PM2.5中重金属污染评价[J]. 山东大学学报(医学版), 2018, 56(11): 116-122. DOI: 10.6040/j.issn.1671-7554.0.2018.549.Liu X, Zuo SM, Zhang Y, et al. Pollution evaluation of heavy metals on PM2.5 in a city of North China[J]. J Shandong Univ Heal Sci, 2018, 56(11): 116-122. DOI: 10.6040/j.issn.1671-7554.0.2018.549. [9] 闫丽娜, 左昊, 张聚全, 等. 石家庄市大气PM1、PM2.5和PM10中重金属元素分布特征及来源的对比研究[J]. 地学前缘, 2019, 26(3): 263-270. DOI: 10.13745/j.esf.2019.03.029.Yan LN, Zuo H, Zhang JQ, et al. Comparative study on the distribution characteristics and sources of heavy metal elements in PM1, PM2.5 and PM10 in Shijiazhuang City[J]. Earth Sci Front, 2019, 26(3): 263-270. DOI: 10.13745/j.esf.2019.03.029. [10] 齐文启, 曹杰山, 陈亚蕾. 铟(In)和铊(Tl)的土壤环境背景值研究[J]. 土壤通报, 1992, 23(1): 31-33. DOI: 10.19336/j.cnki.trtb.1992.01.011.Qi WQ, Cao JS, Chen YL. Soil environmental background values of indium (In) and thallium (Tl)[J]. Chin J Soil Sci, 1992, 23(1): 31-33. DOI: 10.19336/j.cnki.trtb.1992.01.011. [11] 高衍新, 隋少峰, 孔凡玲, 等. 济南市主城区大气PM2.5中重金属污染特征及评价[J]. 环境与职业医学, 2019, 36(11): 1042-1048. DOI: 10.13213/j.cnki.jeom.2019.19304.Gao YX, Sui SF, Kong FL, et al. Characteristic analysis and evaluation of heavy metal pollution in atmospheric PM2.5 in main urban area of Jinan City[J]. J Environ Occup Med, 2019, 36(11): 1042-1048. DOI: 10.13213/j.cnki.jeom.2019.19304. [12] 李吉锋. 国内城市大气PM2.5中重金属污染研究进展[J]. 化学教育, 2020, 41(2): 13-20. DOI: 10.13884/j.1003-3807hxjy.2018120083.Li JF. Research progress of heavy metal pollution in PM2.5 in the domestic city[J]. J Chem Edu, 2020, 41(2): 13-20. DOI: 10.13884/j.1003-3807hxjy.2018120083. [13] 邵瑞华, 苏晨曦, 范芳, 等. 珠三角地区环境空气PM2.5中重金属生态风险评估[J]. 环境科学与技术, 2019, 42(S1): 273-279. DOI: 10.19672/j.cnki.1003-6504.2019.S1.046.Shao RH, Su CX, Fan F, et al. Ecological risk assessment of heavy metalsin ambient air PM2.5 in the Pearl River Delta region[J]. Environ Sci Technol, 2019, 42(S1): 273-279. DOI: 10.19672/j.cnki.1003-6504.2019.S1.046. [14] 高博, 孙可, 任明忠, 等. 北江表层沉积物中铊污染的生态风险[J]. 生态环境, 2008, 17(2): 528-532. DOI: 10.16258/j.cnki.1674-5906.2008.02.014.Gao B, Sun K, Ren MZ, et al. Ecological risk assessment of thallium pollution in the surface sediment of Beijiang River[J]. Ecol Environ, 2008, 17(2): 528-532. DOI: 10.16258/j.cnki.1674-5906.2008.02.014. [15] 陶俊, 张仁健, 段菁春, 等. 北京城区PM2.5中致癌重金属季节变化特征及其来源分析[J]. 环境科学, 2014, 35(2): 411-417. DOI: 10.13227/j.hjkx.2014.02.012.Tao J, Zhang RJ, Duan JC, et al. Seasonal variation of carcinogenic heavy metals in PM2.5 and source analysis in Beijing[J]. Environ Sci, 2014, 35(2): 411-417. DOI: 10.13227/j.hjkx.2014.02.012. [16] 韩军彩, 陈静, 钤伟妙, 等. 石家庄市空气颗粒物污染与气象条件的关系[J]. 中国环境监测, 2016, 32(2): 31-37. DOI: 10.19316/j.issn.1002-6002.2016.02.005.Han JC, Chen J, Qian WM, et al. The research on relationship between meteorological condition and atmospheric particles in Shijiazhuang[J]. Environ Monit China, 2016, 32(2): 31-37. DOI: 10.19316/j.issn.1002-6002.2016.02.005. [17] Duan JC, Tan JH. Atmospheric heavy metals and Arsenic in China: situation, sources and control policies[J]. Atmos Environ, 2013, 74(2): 93-101. DOI: 10.1016/j.atmosenv.2013.03.031. [18] 李伟芳, 白志鹏, 史建武, 等. 天津市环境空气中细粒子的污染特征与来源[J]. 环境科学研究, 2010, 23(4): 394-400. DOI: 10.13198/j.res.2010.04.20.liwf.020.Li WF, Bai ZP, Shi JW, et al. Pollution characteristics and sources of fine particulate matter in ambient air in Tianjin City[J]. Res Environ Sci, 2010, 23(4): 394-400. DOI: 10.13198/j.res.2010.04.20.liwf.020. [19] 徐玲玲, 赵金平, 徐亚, 等. 大气汞的来源及其浓度分布特征研究进展[J]. 环境污染与防治, 2011, 33(11): 82-88, 92. DOI: 10.15985/j.cnki.1001-3865.2011.11.024.Xu LL, Zhao JP, Xu Y, et al. Progress in research on sources and distribution of atmospheric mercury[J]. Environ Pollut Control, 2011, 33(11): 82-88, 92. DOI: 10.15985/j.cnki.1001-3865.2011.11.024. -