Main risk factors and clustering of cardiovascular diseases in Sichuan Province based on a multi-level model
-
摘要:
目的 探讨四川省不同地域居民心血管疾病(cardiovascular disease, CVD)主要危险因素的分布及高危类型聚集情况。 方法 采用多阶段整群抽样的方法,随机抽取四川省10个县(区),于2015—2019年开展CVD高危人群筛查,共29 300名35~75岁常住居民纳入本次研究。采用多水平Logistic回归分析模型,对四川省不同地域CVD高危类型聚集情况进行分析。 结果 本调查人群中共检出CVD高危人群29 300例,标化检出率为17.64%,其中男性高于女性,农村高于城市,文化程度为高中教育及以上、家庭年收入≥5万元标化检出率较高,高危人群检出率川西地区最高,川南地区最低;标化检出率随年龄增长呈递增趋势。高危人群平均年龄(58.45±12.47)岁,分地域的基本特征、自报疾病史、危险因素情况及健康测量指标均有统计学差异(均有P<0.001)。不同地域对高危类型聚集风险的影响可忽略不计;男性≥2种高危类型聚集程度高于女性(P<0.001),CVD高危类型聚集个数随年龄增长呈上升趋势;城市(OR=0.770, 95% CI: 0.717~0.828, P<0.001)为2种高危类型聚集程度的保护因素;高中程度及以下(OR=1.125, 95% CI: 1.011~1.252, P=0.030)、家庭年收入<5万元(OR=1.121, 95% CI: 1.008~1.247, P=0.036)为2种高危类型聚集程度的危险因素。 结论 四川省不同地域对高危类型聚集风险的影响可忽略不计,CVD高危类型聚集风险的防控应重点应关注和干预男性、高龄、文化程度高中以下、农村居民和家庭年收入<5万元人群,并针对不同地域的危险因素采取针对性措施,以取得更好的防控效果。 Abstract:Objective To investigate the distribution and aggregation of high risk types of cardiovascular diseases (CVD) in different areas of Sichuan Province. Methods A total of 10 counties (districts) in Sichuan Province were randomly selected by multi-stage cluster sampling. A total of 29 300 permanent residents aged 35 to 75 years were included in this study during 2015 to 2019. Multi-level Logistic regression model was used to analyze the aggregation of CVD high-risk types in different regions of Sichuan Province. Results A total of 29 300 patients with high-risk of CVD were detected, and the standardized detection rate was 17.64%, among Patients the male was higher than the female, the rural was higher than the urban, high school education or above, and the family annual income ≥ 50 000 was higher. The detection rate of high-risk population was the highest in western Sichuan and the lowest in southern Sichuan. The standard detection rate increased with age. The average age of high-risk group was (58.45±12.47) years old, and there were statistical differences in basic characteristics, self-reported disease history, risk factors and health indicators by region (P<0.001). The influence of different regions on the aggregation risk of high-risk types could be ignored. The aggregation degree of ≥2 high-risk types in males was higher than that in females (P<0.001), and the concentration of high-risk types of CVD increased with age. Living in city (OR=0.770, 95% CI: 0.717-0.828, P<0.001) was the protective factor for the aggregation degree of two high-risk types. High school degree and below (OR=1.125, 95% CI: 1.011-1.252, P=0.030) and annual household income<50 000 (OR=1.121, 95% CI: 1.008-1.247, P=0.036) were the risk factors for aggregation degree of two high-risk types. Conclusion The influence of the different regions of Sichuan Province for high-risk type gathering risk negligible. The prevention and control of high-risk types of CVD aggregation risk should focus on the male, high school age, culture level, rural residents, family income,<50 000 people, and for risk factors of different areas in Sichuan Province to take targeted measures, in order to obtain better control effect. -
Key words:
- Cardiovascular disease /
- High-risk population /
- Risk factor /
- Aggregation /
- Multi-level model
-
表 1 四川省CVD高危人群整体、分地域的基本特征与危险因素情况[n (%)]
Table 1. Basic characteristics and risk factors of CVD high-risk population in Sichuan Province [n (%)]
项目 整体
(n=29 300)川中地区
(n=9 609)川西地区
(n=1 458)川南地区
(n=7 756)川北地区
(n=10 477)F/χ2值 P值 人口学与社会经济特征 女性 17 316(59.10) 5 581(58.08) 816(55.97) 4 791(61.77) 6 128(58.49) 34.561 < 0.001 a 年龄(岁, x±s) 60.78±9.06 61.03±8.73 55.61±8.60 60.86±9.13 61.22±9.16 171.569 b < 0.001 a 农民 14 499(49.48) 4 695(48.86) 1 164(79.84) 2 327(30.00) 6 313(60.26) 2 202.683 < 0.001 a 高中教育及以上 3 762(12.84) 1 357(14.12) 231(15.84) 1 319(17.01) 855(8.16) 351.149 < 0.001 a 已婚 25 840(88.19) 8 361(87.01) 1 401(96.09) 6 618(85.33) 9 460(90.29) 205.701 < 0.001 a 家庭年收入≥5万元 3 078(10.51) 1 001(10.42) 791(51.00) 891(11.49) 437(4.17) 3 045.124 < 0.001 a 社会医疗保险 28 788(98.25) 9 420(98.03) 1 458(100.00) 7 656(98.71) 10 254(97.87) 46.967 < 0.001 a 自报疾病史 心肌梗死 751(2.56) 99(1.03) 7(0.48) 250(3.22) 395(3.77) 190.388 < 0.001 a 卒中史 1 864(6.36) 252(2.62) 250(3.22) 250(3.22) 1 322(12.62) 1 074.231 < 0.001 a 冠心病 1 006(3.43) 181(1.88) 27(1.85) 302(3.89) 496(4.05) 139.030 < 0.001 a 糖尿病 2 786(9.51) 822(8.56) 162(11.11) 1 032(13.31) 770(7.35) 201.256 < 0.001 a 危险因素 血压≥ 140/90 (mm Hg) 24 837(84.77) 8 571(89.20) 1 114(76.41) 6 455(83.23) 8 697(83.01) 264.330 < 0.001 a GLU≥ 7.0 (mmol/L) 9 232(31.51) 2 779(28.92) 319(21.88) 2 738(35.30) 3 396(32.41) 148.149 < 0.001 a BMI≥ 24 (kg/m2) 17 659(60.27) 5 897(61.37) 939(64.40) 4 663(60.12) 6 160(58.80) 24.839 < 0.001 a TC≥ 5.0 (mmol/L) 12 458(42.52) 3 816(39.71) 676(46.36) 3 725(48.03) 4 241(40.48) 153.910 < 0.001 a 中心性肥胖 10 807(36.88) 3 859(40.16) 666(45.68) 3 031(39.08) 3 251(31.03) 263.045 < 0.001 a 吸烟 5 736(19.58) 1 742(18.13) 264(18.11) 1 559(20.10) 2 171(20.72) 24.869 < 0.001 a 饮酒 3 949(13.48) 1 249(13.00) 122(8.37) 1 191(15.36) 1 387(13.24) 58.518 < 0.001 a 健康测量指标 SBP(mm Hg, x±s) 159.94±22.09 162.02±19.95 151.58±22.74 159.03±22.09 159.86±23.51 103.419 b < 0.001 a DBP(mm Hg, x±s) 89.03±13.16 90.79.±13.21 90.78±13.58 88.12±12.86 87.84±13.01 108.324 b < 0.001 a GLU(mmol/L, x±s) 6.88±2.25 6.77±2.13 6.65±2.44 7.06±2.42 6.89±2.20 39.621 b < 0.001 a BMI(kg/m2, x±s) 25.06±3.46 25.19±3.50 25.40±3.41 25.03±3.42 24.92±3.47 14.686 b < 0.001 a WC(cm, x±s) 83.51±9.64 84.41±9.53 86.31±9.85 83.98±9.51 81.94±9.58 171.049 b < 0.001 a TG(mmol/L, x±s) 1.71±0.41 1.61±0.25 2.24±0.32 1.79±0.34 1.66±0.23 173.414 b < 0.001 a TC(mmol/L, x±s) 4.97±1.36 4.87±1.29 4.98±1.29 5.16±1.41 4.86±1.03 72.788 b < 0.001 a HDL-C(mmol/L, x±s) 1.47±0.47 1.49±0.47 1.16±0.35 1.45±0.47 1.51±0.46 252.493 b < 0.001 a LDL-C(mmol/L, x±s) 2.74±0.54 2.62±0.39 2.98±0.38 2.87±0.23 2.71±0.48 84.283 b < 0.001 a 注:a P<0.05,b F值。 表 2 四川省CVD高危人群检出率及四种高危类型聚集情况[n (%)]
Table 2. The detection rate of high risk population of CVD and the clustering of four high risk types in Sichuan Province [n (%)]
变量 调查总人数 高危例数 标化后检出率 高危类型聚集 χ2/Z值 P值 1个 2个 3个 4个 地域 112.641 < 0.001 a 川中地区 44 779 9 609 19.51 7 600(79.09) 1 855(19.31) 151(1.57) 3(0.03) 川西地区 6 007 1 458 23.56 1 237(84.84) 201(13.79) 20(1.37) 0(0.00) 川南地区 38 410 7 756 16.76 5 868(75.66) 1 729(22.29) 159(2.05) 0(0.00) 川北地区 49 374 10 477 18.66 7 902(75.42) 2 304(21.99) 267(2.55) 4(0.04) 地区 86.822 < 0.001 a 农村 76 337 17 010 18.12 12 817(75.35) 3 850(22.63) 341(2.00) 2(0.02) 城市 62 233 12 290 17.01 9 790(79.66) 2 239(18.22) 256(2.08) 3(0.02) 性别 174.596 < 0.001 a 男 52 487 11 984 20.59 8 780(73.26) 2 913(24.31) 287(2.39) 4(0.04) 女 86 085 17 316 16.26 13 827(79.85) 3 176(18.34) 310(1.79) 3(0.02) 年龄(岁) 38.391 < 0.001 a 35~<40 3 637 457 12.57 435(95.19) 21(4.60) 1(0.21) 0(0.00) 40~<50 25 014 3 478 13.51 3 174(91.26) 278(7.99) 26(0.75) 0(0.00) 50~<60 38 530 7 279 19.06 6 321(86.84) 861(11.83) 96(1.32) 1(0.01) 60~<70 53 466 12 818 23.80 9 098(70.98) 3 398(26.51) 318(2.48) 4(0.03) 70~75 17 923 5 268 31.25 3 579(67.94) 1 531(29.06) 156(2.96) 2(0.04) 文化程度 99.351 < 0.001 a 高中教育以下 119 468 25 538 17.00 19 466(76.22) 5 529(21.65) 536(2.10) 7(0.03) 高中教育及以上 19 104 3 762 18.99 3 141(83.49) 560(14.89) 61(1.62) 0(0.00) 家庭年收入(万元) 44.517 < 0.001 a <5 123 572 26 222 17.41 20 086(76.60) 5 583(21.29) 546(2.08) 7(0.03) ≥5 15 000 3 078 18.76 2 521(81.90) 506(16.44) 51(1.66) 0(0.00) 合计 138 572 29 300 17.64 22 607(77.16) 6 089(20.78) 597(2.04) 7(0.02) 注:a P<0.05。 表 3 空模型的随机效应估计结果
Table 3. Results of the random effect estimates for the null model
参数 估计值 标准误 Z值 P值 截距方差(σμ02) 0.002 0.001 2.006 0.045 残差方差(σ2) 0.228 0.002 121.016 < 0.001 表 4 不同血压水平人群相关影响因素的无序多分类Logistic回归分析
Table 4. Disordered multiple Logistic regression analysis of related factors in different blood pressure levels
影响因素 高危类型聚集个数为2个 高危类型聚集个数≥3个 OR 95% CI P OR 95% CI P 性别(对照组=女性) 1.437 1.355~1.525 < 0.001 a 1.469 1.247~1.730 < 0.001 a 地区(对照=农村) 0.770 0.717~0.828 < 0.001 a 1.012 0.717~1.235 0.911 年龄(对照=70~75岁) 60~<70 0.888 0.828~0.955 < 0.001 a 0.820 0.675~0.996 0.046 a 50~<60 0.331 0.301~0.363 < 0.001 a 0.364 0.281~0.470 < 0.001 a 40~<50 0.209 0.182~0.239 < 0.001 a 0.191 0.125~0.291 < 0.001 a 35~<40 0.123 0.097~0.191 < 0.001 a 0.055 0.008~0.393 0.004 a 文化程度(对照=高中程度及以上) 1.125 1.011~1.252 0.030 a 1.099 0.821~1.471 0.526 家庭年收入(对照=年收入≥5万元) 1.121 1.008~1.247 0.036 a 1.176 0.870~1.590 0.293 注:a P<0.05。 -
[1] 国家心血管病中心. 中国心血管病报告[M]. 北京: 科学出版社, 2019.National Center for Cardiovascular Diseases. Chinese cardiovascular disease report[M]. Beijing: Science Press, 2019. [2] 曾晶, 邓颖, 季奎, 等. 1989-2018年四川省居民期望寿命和死亡谱变化趋势研究[J]. 中国慢性病预防与控制, 2019, 37(8): 570-574. DOI: 10.16386/j.cjpccd.issn.1004-6194.2019.08.003.Zeng J, Deng Y, Ji K, et al. Study on the trend of life expectancy and death spectrum in residents of Sichuan Province from 1989 to 2018[J]. Chin J Prev Contr Chron Dis, 2019, 37(8): 570-574. DOI: 10.16386/j.cjpccd.issn.1004-6194.2019.08.003. [3] Liu SW, Li YC, Zeng XY, et al. Burden of cardiovascular diseases in China, 1990-2016: findings from the 2016 Global Burden of Disease Study[J]. JAMA Cardiol, 2019, 4(4): 342-352. DOI: 10.1001/jamacardio.2019.0295 [4] 文小焱, 潘惊萍, 段占祺, 等. 2015-2017年四川省心脑血管疾病负担研究[J]. 中国慢性病预防与控制, 2021, 29(1): 14-17. DOI: 10.16386/j.cjpccd.issn.1004-6194.2021.01.003.Wen XY, Pan JP, Duan ZQ, et al. The burden of cardiovascular and cerebrovascular diseases in Sichuan Province from 2015 to 2017[J]. Chin J Prev Contr Chron Dis, 2021, 29(1): 14-17. DOI: 10.16386/j.cjpccd.issn.1004-6194.2021.01.003. [5] 胥馨尹, 邓颖, 曾晶, 等. 基于中国心血管健康指数的四川省健康指数情况分析[J]. 疾病监测, 2020, 35(5): 381-386. DOI: 10.3784/j.issn.1003-9961.2020.05.005.Xu XY, Deng Y, Zeng J, et al. Health index in Sichuan based on Cardiovascular Health Index in China[J]. Dis Surveillance, 2020, 35(5): 381-386. DOI: 10.3784/j.issn.1003-9961.2020.05.005. [6] 查雨欣, 邓颖, 吴先萍, 等. 健康支持性环境对四川农村人群的不同血压水平的影响分析[J]. 现代预防医学, 2020, 47(17): 3179-3183. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF202017029.htmZha YX, Deng Y, Wu XP, et al. Influencing factors of health supportive environment on different blood pressure levels in rural population, Sichuan[J]. Modern Prevent Med, 2020, 47(17): 3179-3183. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF202017029.htm [7] 高血压联盟(中国), 中国医疗保健国际交流促进会高血压分会, 中国高血压防治指南修订委员会, 等. 中国高血压防治指南(2018年修订版)[J]. 中国心血管杂志, 2019, 24(1): 24-56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.Writing Group of 2018 Chinese Guidelines for the Management of Hypertension, Chinese Hypertension League, Hypertension Branch of China International Exchange and Promotive Association for Medical and Health Care, et al. Guidelines for Prevention and Treatment of Hypertension in China (2018 Revised edition)[J]. Chin J Card, 2019, 24(1): 24-56. DOI: 10.3969/j.issn.1007-5410.2019.01.002. [8] 中华人民共和国卫生部疾病控制司. 中国成人超重和肥胖症预防控制指南[M]. 北京: 人民卫生出版社, 2003: 3.Department of Disease Control, Ministry of Health, PRC. Prevention and control of adult overweight and obesity in China[M]. Beijing: People's Medical Publishing House, 2003: 3. [9] 诸骏仁, 高润霖, 赵水平, 等. 中国成人血脂异常防治指南(2016年修订版)[J]. 中国循环杂志, 2016, 31(10): 937-953. doi: 10.3969/j.issn.1000-3614.2016.10.001Zhu JR, Gao RL, Zhao SP, et al. Guidelines for prevention and treatment of dyslipidemia in Chinese adults (revised 2016)[J]. Chin Circ J, 2016, 31(10): 937-953. doi: 10.3969/j.issn.1000-3614.2016.10.001 [10] Begg S, Vos T, Barker B, et al. The burden of disease and injury in Australia 2003. PHE 82[R]. Canberra: AIHW, 2007. [11] Benjamin EJ. Heart disease and stroke statistics-2019 update: a report from the American heart association[R]. Circulation, 2019. [12] Lu J, Xuan S, Downing NS, et al. Protocol for the China PEACE(patient-centered evaluative assessment of cardiac events) MillionPersons project pilot[J]. BMJ Open, 2016, 6(1): e10200. DOI: 10.1136/bmjopen-2015-010200. [13] 付尧, 刘思洁, 刘婷, 等. 吉林省居民心血管病高危人群流行病学特征及其影响因素[J]. 中华疾病控制杂志, 2020, 24(11): 1297-1301. DOI: 10.16462/j.cnki.zhjbkz.2020.11.011.Fu Y, Liu SJ, Liu T, et al. Epidemiological characteristics and influencing factors of high risk population of cardiovascular disease in Jilin Province[J]. Chin J Dis Control Prev, 2020, 24(11): 1297-1301. DOI: 10.16462/j.cnki.zhjbkz.2020.11.011. [14] 孙中明, 覃玉, 张璐珉, 等. 江苏省城乡居民心血管病高危人群流行病学特征及聚集性分析[J]. 江苏预防医学, 2019, 30(1): 44-47. DOI: 10.13668/j.issn.1006-9070.2019.01.04.Sun ZM, Qin Y, Zhang LM, et al. Analysis on high risk epidemic characteristics and clustering of cardiovascular diseases among urban and rural residents in Jiangsu Province[J]. J Jiangsu Prevent Med, 2019, 30(1): 44-47. DOI: 10.13668/j.issn.1006-9070.2019.01.04. [16] 杨珉, 李晓松. 医学和公共卫生研究常用多水平统计模型[M]. 北京: 北京大学医学出版社, 2007.Yang M, Li XS. Multi-level statistical models commonly used in medical and public health research[M]. Beijing: Peking University Medical Press, 2007. [17] Preciado MA, Jennifer LK, Andrew H, et al. Using a dyadic Logistic multilevel model to analyze couple data[J] Contraception, 2016, 93(2): 113-118. DOI: 10.1016/j.contraception.2015.09.001. -