-
摘要: 近年来中国职业卫生与职业病研究取得了长足的发展,以职业暴露人群为研究中心,针对职业病的病因、发病机制、人群易感性生物标志物以及风险评估等方面开展了大量的研究,填补了中国甚至世界范围内诸多职业卫生与职业病方面的空缺,具有重要的公共卫生意义。目前中国处于高速发展阶段,大批新兴的、创新的技术正应用于各个领域,推动着中国的产业结构、生产方式和生产技术发生巨大变革,新兴领域的高速发展对职业卫生提出了新的挑战,表现为传统的职业性有害因素带来的职业卫生问题逐渐减少,新的问题不断出现。职业卫生和职业医学也迫切需要将医学科学的新理念、新技术应用于本学科,建立新型健康风险评价体系,进而满足职业人群健康监护和职业病诊断治疗的需求。Abstract: Recently, research about occupational health and occupational disease in China has made great progress in the etiology, pathogenesis, susceptibility biomarkers and risk assessment of occupational diseases, which are focused on occupational exposure, and have greatly made up for those deficiencies in China and even worldwide. At present, our country is in a stage of rapid development, and a large number of new and innovative technologies are applied in various fields to make great changes in the industrial structure, production methods and production technologies in China. Notably, the rapid development of new fields has posed new challenges to occupational health, namely the reduction of occupational health problems caused by traditional occupational harmful factors and the emergence of new problems. Occupational health and occupational medicine also urgently need to apply new concepts and technologies of medical science to establish a new health risk assessment, and then meet the needs of occupational health monitoring and the diagnosis and treatment of occupational diseases.
-
Key words:
- Occupational health /
- Occupational diseases /
- Research tendency /
- Development
-
[1] Li J, Yin P, Wang H, et al. The disease burden attributable to 18 occupational risks in China: an analysis for the global burden of disease study 2017[J]. Environ Health, 2020, 19(1): 21. DOI: 10.1186/s12940-020-00577-y. [2] Chen W, Liu Y, Wang H, et al. Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: a cohort study[J]. PLoS Med, 2012, 9(4): e1001206. DOI: 10.1371/journal.pmed.1001206. [3] Liu Y, Steenland K, Rong Y, et al. Exposure-response analysis and risk assessment for lung cancer in relationship to silica exposure: a 44-year cohort study of 34, 018 workers[J]. Am J Epidemiol, 2013, 178(9): 1424-1433. DOI: 10.1093/aje/kwt139. [4] 刘跃伟. 矽尘长期暴露人群死亡率的队列研究[D]. 武汉: 华中科技大学, 2011.Liu YW. Cohort Mortality Study of Workers with Long-Term Exposure to Silica Dust[D]. Wuhan: Huazhong University of Science and Technology, 2011. [5] Tse LA, Dai J, Chen M, et al. Prediction models and risk assessment for silicosis using a retrospective cohort study among workers exposed to silica in China[J]. Sci Rep, 2015, 5: 11059. DOI: 10.1038/srep11059. [6] IARC working group on the evaluation of carcinogenic risks to humans. Arsenic, metals, fibres, and dusts[J]. IARC Monogr Eval Carcinog Risks Hum, 2012, 100(Pt C): 11-465. [7] 夏丽华, 黄汉林, 邝守仁, 等. 三氯乙烯所致药疹样皮炎50例临床分析[J]. 中华劳动卫生职业病杂志, 2004, 22(3): 51-54. DOI: 10.3760/cma.j.issn.1001-9391.2004.03.014.Xia LH, Huang HL, Kuang SR, et al. A clinical analysis of 50 cases of medicament-like dermatitis due to trichloroethylene[J]. Chin J Ind Hyg Occup Dis, 2004, 22(3): 51-54. DOI: 10.3760/cma.j.issn.1001-9391.2004.03.014. [8] 吴奇峰, 夏丽华, 曾子芳, 等. 职业性三氯乙烯药疹样皮炎临床路径研制[J]. 中国职业医学, 2017, 44(4): 420-424, 429. DOI: 10.11763/j.issn.2095-2619.2017.04.004.Wu QF, Xia LH, Zeng ZF, et al. Clinical pathway on occupational medicamentosa-like dermatitis due to trichloroethylene[J]. Chin Occup Med, 2017, 44(4): 420-424, 429. DOI: 10.11763/j.issn.2095-2619.2017.04.004. [9] Lv Y, Zou Y, Liu J, et al. Rationale, design and baseline results of the Guangxi manganese-exposed workers healthy cohort (GXMEWHC) study[J]. BMJ Open, 2014, 4(7): e005070. DOI: 10.1136/bmjopen-2014-005070. [10] Zhou Y, Ge X, Shen Y, et al. Follow-up of the manganese-exposed workers healthy cohort (MEWHC) and biobank management from 2011 to 2017 in China[J]. BMC Public Health, 2018, 18(1): 944. DOI: 10.1186/s12889-018-5880-0. [11] Zou Y, Qing L, Zeng X, et al. Cognitive function and plasma BDNF levels among manganese-exposed smelters[J]. Occup Environ Med, 2014, 71(3): 189-194. DOI: 10.1136/oemed-2013-101896. [12] Lu XT, Xu SM, Zhang YW, et al. Longitudinal study of the effects of occupational aluminium exposure on workers' cognition[J]. Chemosphere, 2021, 271: 129569. DOI: 10.1016/j.chemosphere.2021.129569. [13] Meng H, Wang S, Guo J, et al. Cognitive impairment of workers in a large-scale aluminium factory in China: a cross-sectional study[J]. BMJ Open, 2019, 9(6): e027154. DOI: 10.1136/bmjopen-2018-027154. [14] Wang S, Meng H, Shang N, et al. The relationship between plasma al levels and multi-domain cognitive performance among in-service aluminum-exposed workers at the SH aluminum factory in China: a cross-sectional study[J]. Neurotoxicology, 2020, 76: 144-152. DOI: 10.1016/j.neuro.2019.10.011. [15] Yang X, Yuan Y, Lu X, et al. The relationship between cognitive impairment and global DNA methylation decrease among aluminum potroom workers[J]. J Occup Environ Med, 2015, 57(7): 713-717. DOI: 10.1097/JOM.0000000000000474. [16] Wang F, Zou Y, Shen Y, et al. Synergistic impaired effect between smoking and manganese dust exposure on pulmonary ventilation function in Guangxi manganese-exposed workers healthy cohort (GXMEWHC)[J]. PLoS One, 2015, 10(2): e0116558. DOI: 10.1371/journal.pone.0116558. [17] 阳益萍, 黄锦利, 刘静, 等. 长期职业性锰暴露对工人肺功能的影响[J]. 环境与职业医学, 2013, 30(1): 29-31. DOI: 10.13213/j.cnik.jeom.2013.01.015.Yang YP, Huang JL, Liu J, et al. Long-term effect of occupational exposure to manganese on pulmonary ventilation function[J]. J Environ Occup Med, 2013, 30(1): 29-31. DOI: 10.13213/j.cnik.jeom.2013.01.015. [18] Ou SY, Luo HL, Mailman RB, et al. Effect of manganese on neural endocrine hormones in serum of welders and smelters[J]. J Trace Elem Med Biol, 2018, 50: 1-7. DOI: 10.1016/j.jtemb.2018.05.018. [19] Deng Q, Liu J, Li Q, et al. Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China[J]. Environ Health, 2013, 12: 30. DOI: 10.1186/1476-069X-12-30. [20] Huang S, Liu Z, Ge X, et al. Occupational exposure to manganese and risk of creatine kinase and creatine kinase-MB elevation among ferromanganese refinery workers[J]. Am J Ind Med, 2020, 63(5): 394-401. DOI: 10.1002/ajim.23097. [21] Chen X, Liu Z, Ge X, et al. Associations between manganese exposure and multiple immunological parameters in manganese-exposed workers healthy cohort[J]. J Trace Elem Med Biol, 2020, 59: 126454. DOI: 10.1016/j.jtemb.2020.126454. [22] Li L, Yang X. The essential element manganese, oxidative stress, and metabolic diseases: links and interactions[J]. Oxid Med Cell Longev, 2018, 2018: 7580707. DOI: 10.1155/2018/7580707. [23] Li H, Dai Y, Huang H, et al. HLA-B*1301 as a biomarker for genetic susceptibility to hypersensitive dermatitis induced by trichloroethylene among workers in China[J]. Environ Health Perspect, 2007, 115(11): 1553-1556. DOI: 10.1289/ehp.10325. [24] Dai Y, Chen Y, Huang H, et al. Performance of genetic risk factors in prediction of trichloroethylene induced hypersensitivity syndrome[J]. Sci Rep, 2015, 5: 12169. DOI: 10.1038/srep12169. [25] Dai Y, Zhou W, Jia Q, et al. Utility evaluation of HLA-B*13: 01 screening in preventing trichloroethylene-induced hypersensitivity syndrome in a prospective cohort study[J]. Occup Environ Med, 2020, 77(3): 201-206. DOI: 10.1136/oemed-2019-106171. [26] Jia Q, Zang D, Yi J, et al. Cytokine expression in trichloroethylene-induced hypersensitivity dermatitis: an in vivo and in vitro study[J]. Toxicol Lett, 2012, 215(1): 31-39. DOI: 10.1016/j.toxlet.2012.09.018 [27] Huang Y, Xia L, Wu Q, et al. Trichloroethylene hypersensitivity syndrome is potentially mediated through its metabolite chloral hydrate[J]. PLoS One, 2015, 10(5): e0127101. DOI: 10.1371/journal.pone.0127101. [28] Niu Y, Zhang X, Meng T, et al. Exposure characterization and estimation of benchmark dose for cancer biomarkers in an occupational cohort of diesel engine testers[J]. J Expo Sci Environ Epidemiol, 2018, 28(6): 579-588. DOI: 10.1038/s41370-018-0061-x. [29] Bin P, Shen M, Li H, et al. Increased levels of urinary biomarkers of lipid peroxidation products among workers occupationally exposed to diesel engine exhaust[J]. Free Radic Res, 2016, 50(8): 820-830. DOI: 10.1080/10715762.2016.1178738. [30] Duan H, Jia X, Zhai Q, et al. Long-term exposure to diesel engine exhaust induces primary DNA damage: a population-based study[J]. Occup Environ Med, 2016, 73(2): 83-90. DOI: 10.1136/oemed-2015-102919. [31] Zhang X, Duan H, Gao F, et al. Increased micronucleus, nucleoplasmic bridge, and nuclear bud frequencies in the peripheral blood lymphocytes of diesel engine exhaust-exposed workers[J]. Toxicol Sci, 2015, 143(2): 408-417. DOI: 10.1093/toxsci/kfu239. [32] Zhang X, Li J, He Z, et al. Associations between DNA methylation in DNA damage response-related genes and cytokinesis-block micronucleus cytome index in diesel engine exhaust-exposed workers[J]. Arch Toxicol, 2016, 90(8): 1997-2008. DOI: 10.1007/s00204-015-1598-2. [33] Lan Q, Vermeulen R, Dai Y, et al. Occupational exposure to diesel engine exhaust and alterations in lymphocyte subsets[J]. Occup Environ Med, 2015, 72(5): 354-359. DOI: 10.1136/oemed-2014-102556. [34] Dai Y, Ren D, Bassig BA, et al. Occupational exposure to diesel engine exhaust and serum cytokine levels[J]. Environ Mol Mutagen, 2018, 59(2): 144-150. DOI: 10.1002/em.22142. [35] Liu H, Li J, Ma Q, et al. Chronic exposure to diesel exhaust may cause small airway wall thickening without lumen narrowing: a quantitative computerized tomography study in Chinese diesel engine testers[J]. Part Fibre Toxicol, 2021, 18(1): 14. DOI: 10.1186/s12989-021-00406-1. [36] Chen XY, Feng PH, Han CL, et al. Alveolar epithelial inter-alpha-trypsin inhibitor heavy chain 4 deficiency associated with senescence-regulated apoptosis by air pollution[J]. Environ Pollut, 2021, 278: 116863. DOI: 10.1016/j.envpol.2021.116863. [37] Wang Y, Wang T, Xu M, et al. Independent effect of main components in particulate matter on DNA methylation and DNA methyltransferase: A molecular epidemiology study[J]. Environ Int, 2020, 134: 105296. DOI: 10.1016/j.envint.2019.105296. [38] Deng Q, Huang S, Zhang X, et al. Plasma microRNA expression and micronuclei frequency in workers exposed to polycyclic aromatic hydrocarbons[J]. Environ Health Perspect, 2014, 122(7): 719-725. DOI: 10.1289/ehp.1307080. [39] Wang Y, Duan H, Meng T, et al. Reduced serum club cell protein as a pulmonary damage marker for chronic fine particulate matter exposure in Chinese population[J]. Environ Int, 2018, 112: 207-217. DOI: 10.1016/j.envint.2017.12.024 [40] Zhang Y, Su Z, Hu G, et al. Lung function assessment and its association with blood chromium in a chromate exposed population[J]. Sci Total Environ, 2022, 818: 151741. DOI: 10.1016/j.scitotenv.2021.151741. [41] Li P, Li Y, Zhang J, et al. Biomarkers for lung epithelium injury in occupational hexavalent chromium-exposed workers[J]. J Occup Environ Med, 2015, 57(4): e45-e50. DOI: 10.1097/JOM.0000000000000436. [42] Hu G, Long C, Hu L, et al. Blood chromium exposure, immune inflammation and genetic damage: Exploring associations and mediation effects in chromate exposed population[J]. J Hazard Mater, 2022, 425: 127769. DOI: 10.1016/j.jhazmat.2021.127769. [43] Cheng W, Pang H, Campen MJ, et al. Circulatory metabolites trigger ex vivo arterial endothelial cell dysfunction in population chronically exposed to diesel exhaust[J]. Part Fibre Toxicol, 2022, 19(1): 20. DOI: 10.1186/s12989-022-00463-0. [44] 贾强, 纪玉青, 孟涛, 等. 利用HLA-B *1301转基因小鼠探讨三氯乙烯诱导迟发型超敏反应效应[J]. 中国职业医学, 2014, 41(5): 481-488. DOI:10.11763 /j.issn.2095-2619.2014.05.001.Jia Q, Ji YQ, Meng T, et al. The exploration of trichloroethylene-induced delayed hypersensitivity effect with HLA-B*1301 transgenic mice[J]. Chin Occup Med, 2014, 41(5): 481-488. DOI:10.11763 /j.issn.2095-2619.2014.05.001. [45] Wu Z, Liu Q, Wang L, et al. The essential role of CYP2E1 in metabolism and hepatotoxicity of N, N-dimethylformamide using a novel Cyp2e1 knockout mouse model and a population study[J]. Arch Toxicol, 2019, 93(11): 3169-3181. DOI: 10.1007/s00204-019-02567-7. [46] Zhang J, Yang H, Li H, et al. Peptide-binding motifs and characteristics for HLA-B*13: 01 molecule[J]. Tissue Antigens, 2013, 81(6): 442-448. DOI: 10.1111/tan.12114. [47] Zhang H, Han Y, Zhang L, et al. The GSK-3β/β-catenin signaling-mediated brain-derived neurotrophic factor pathway is involved in aluminum-induced impairment of hippocampal LTP in vivo[J]. Biol Trace Elem Res, 2021, 199(12): 4635-4645. DOI: 10.1007/s12011-021-02582-9. [48] Huang T, Guo W, Wang Y, et al. Involvement of mitophagy in aluminum oxide nanoparticle-induced impairment of learning and memory in mice[J]. Neurotox Res, 2021, 39(2): 378-391. DOI: 10.1007/s12640-020-00283-0. [49] Qin X, Li L, Nie X, et al. Effects of chronic aluminum lactate exposure on neuronal apoptosis and hippocampal synaptic plasticity in rats[J]. Biol Trace Elem Res, 2020, 197(2): 571-579. DOI: 10.1007/s12011-019-02007-8. [50] Li H, Xue X, Li L, et al. Aluminum-induced synaptic plasticity impairment via PI3K-Akt-mTOR signaling pathway[J]. Neurotox Res, 2020, 37(4): 996-1008. DOI: 10.1007/s12640-020-00165-5. [51] Cheng L, Liang R, Li Z, et al. Aluminum maltolate triggers ferroptosis in neurons: mechanism of action[J]. Toxicol Mech Methods, 2021, 31(1): 33-42. DOI: 10.1080/15376516.2020.1821268. [52] Song Y, Zhang J, Yu S, et al. Effects of chronic chromium(vi) exposure on blood element homeostasis: an epidemiological study[J]. Metallomics, 2012, 4(5): 463-472. DOI: 10.1039/c2mt20051a. [53] Guiping H, Pai Z, Huimin F, et al. Imbalance of oxidative and reductive species involved in chromium (VI)-induced toxic effects[J]. Reactive Oxygen Species, 2017, 3(3): 1-11. DOI: 10.20455/ros.2017.803 [54] Hu G, Long C, Hu L, et al. Circulating lead modifies hexavalent chromium-induced genetic damage in a chromate-exposed population: An epidemiological study[J]. Sci Total Environ, 2020, 752: 141824. DOI: 10.1016/j.scitotenv.2020.141824. [55] Song Y, Wang T, Pu J, et al. Multi-element distribution profile in Sprague-Dawley rats: effects of intratracheal instillation of Cr(VI) and Zn intervention[J]. Toxicol Lett, 2014, 226(2): 198-205. DOI: 10.1016/j.toxlet.2014.02.008. [56] Liu F, Liu J, Weng D, et al. CD4+CD25+Foxp3+ regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice[J]. PLoS One, 2010, 5(11): e15404. DOI: 10.1371/journal.pone.0015404. [57] Guo J, Gu N, Chen J, et al. Neutralization of interleukin-1 beta attenuates silica-induced lung inflammation and fibrosis in C57BL/6 mice[J]. Arch Toxicol, 2013, 87(11): 1963-1973. DOI: 10.1007/s00204-013-1063-z. [58] Chen Y, Li C, Lu Y, et al. IL-10-producing CD1dhiCD5+ regulatory B cells may play a critical role in modulating immune homeostasis in silicosis patients[J]. Front Immunol, 2017, 8: 110. DOI: 10.3389/fimmu.2017.00110. [59] Ying S, Jiang Z, He X, et al. Serum HMGB1 as a potential biomarker for patients with asbestos-related diseases[J]. Dis Markers, 2017, 2017: 5756102. DOI: 10.1155/2017/5756102. [60] Song L, Weng D, Dai W, et al. Th17 can regulate silica-induced lung inflammation through an IL-1β-dependent mechanism[J]. J Cell Mol Med, 2014, 18(9): 1773-1784. DOI: 10.1111/jcmm.12341. [61] Lu Y, Li C, Du S, et al. 4-1BB signaling promotes alveolar macrophages-mediated pro-fibrotic responses and crystalline silica-induced pulmonary fibrosis in mice[J]. Front Immunol, 2018, 9: 1848. DOI: 10.3389/fimmu.2018.01848. [62] Yang M, Wang D, Gan S, et al. Triiodothyronine ameliorates silica-induced pulmonary inflammation and fibrosis in mice[J]. Sci Total Environ, 2021, 790: 148041. DOI: 10.1016/j.scitotenv.2021.148041. [63] Li C, Lu Y, Du S, et al. Dioscin exerts protective effects against crystalline silica-induced pulmonary fibrosis in mice[J]. Theranostics, 2017, 7(17): 4255-4275. DOI: 10.7150/thno.20270. [64] He X, Chen S, Li C, et al. Trehalose alleviates crystalline silica-induced pulmonary fibrosis via activation of the TFEB-mediated autophagy-lysosomal system in alveolar macrophages[J]. Cells, 2020, 9(1): 122. DOI: 10.3390/cells9010122. [65] Pang J, Qi X, Luo Y, et al. Multi-omics study of silicosis reveals the potential therapeutic targets PGD2 and TXA2[J]. Theranostics, 2021, 11(5): 2381-2394. DOI: 10.7150/thno.47627. [66] Zhang Y, Huang L, Wang Y, et al. Characteristics of publications on occupational stress: contributions and trends[J]. Front Public Health, 2021, 9: 664013. DOI: 10.3389/fpubh.2021.664013. [67] He SC, Wu S, Wang C, et al. Interaction between job stress and the BDNF Val66Met polymorphism affects depressive symptoms in Chinese healthcare workers[J]. J Affect Disord, 2018, 236: 157-163. DOI: 10.1016/j.jad.2018.04.089. [68] Yong X, Gao X, Zhang Z, et al. Associations of occupational stress with job burn-out, depression and hypertension in coal miners of Xinjiang, China: a cross-sectional study[J]. BMJ Open, 2020, 10(7): e036087. DOI: 10.1136/bmjopen-2019-036087. [69] Li X, Yang X, Sun X, et al. Associations of musculoskeletal disorders with occupational stress and mental health among coal miners in Xinjiang, China: a cross-sectional study[J]. BMC Public Health, 2021, 21(1): 1327. DOI: 10.1186/s12889-021-11379-3. [70] Zhang H, Shao MM, Lin XD, et al. A cross-sectional survey on occupational stress and associated dyslipidemia among medical staff in tertiary public hospitals in Wenzhou, China[J]. Brain Behav, 2021, 11(3): e02014. DOI: 10.1002/brb3.2014. [71] Yang T, Qiao Y, Xiang S, et al. Work stress and the risk of cancer: A meta-analysis of observational studies[J]. Int J Cancer, 2019, 144(10): 2390-2400. DOI: 10.1002/ijc.31955.
点击查看大图
计量
- 文章访问数: 1292
- HTML全文浏览量: 413
- PDF下载量: 871
- 被引次数: 0