Mitochondrial DNA copy number in peripheral blood mediates the association between polycyclic aromatic hydrocarbons exposure and blood lipid levels among coke oven plant workers
-
摘要:
目的 探讨外周血线粒体DNA拷贝数(mitochondrial DNA copy number, mtDNAcn)在焦化厂工人多环芳烃(polycyclic aromatic hydrocarbons, PAHs)暴露与血脂水平关系中的中介作用。 方法 采用高效液相色谱-质谱联用(high performance liquid chromatography with tandem mass spectrometry, HPLC-MS/MS)检测661名焦化厂工人尿中11种PAHs羟基代谢物(polycyclic aromatic hydrocarbons hydroxy metabolites, OH-PAHs)。采用反转录聚合酶链反应(reverse transcription-polymerase chain reaction, RT-PCR)技术检测外周血mtDNAcn。应用广义线性回归分析PAHs暴露与外周血mtDNAcn以及血脂指标的剂量-效应关系,应用中介效应分析mtDNAcn在PAHs暴露与血脂水平关系中的中介作用。 结果 按照尿OH-PAHs的三分位数(tertile, T),将研究人群分为T1~T3三组。广义线性回归结果显示,校正混杂因素后,随着2-羟基萘(2-hydroxynaphthalene, 2-OHNAP)和2-羟基菲(2-hydroxyphenanthrene, 2-OHPHE)的升高,mtDNAcn下降(β=-0.240, 95% CI: -0.400~-0.081; β=-0.236, 95% CI: -0.412~-0.059);T3组与T1组相比,2-OHPHE浓度每增加一个单位,TC水平增加0.335(β=0.335, 95% CI: 0.084~0.587);2-羟基芴(2-hydroxyfluorene, 2-OHFLU)浓度每增加一个单位,TG水平增加0.357(β=0.357, 95% CI: 0.102~0.612);1-羟基萘(1-hydroxynaphthalene, 1-OHNAP)T2组和T3组与T1组相比浓度每增加一个单位,HDL-C水平分别下降0.232和0.615(β=-0.232, 95% CI: -0.430~-0.035; β=-0.615, 95% CI: -0.858~-0.373)。中介分析结果显示,mtDNAcn在PAHs暴露与血脂水平关系中起到部分中介作用,中介比例为12.61%。 结论 焦化厂工人PAHs暴露可能通过外周血mtDNAcn下降从而对血脂产生不利影响。 Abstract:Objective To investigate the mediating role of mitochondrial DNA copy number (mtDNAcn) in the association between exposure to polycyclic aromatic hydrocarbons (PAHs) and blood lipid levels in coke-oven plant workers. Methods Eleven urine biomarkers of PAHs exposure of 661 coking plant workers were determined by high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Relative mtDNAcn was measured based on RT-PCR. The dose-effect relationship between PAHs and mtDNAcn in peripheral blood and blood lipid parameters by the generalized linear regression model, and mediating effect analysis was used to analyze the role of mtDNAcn in PAHs exposure and abnormal blood lipid levels. Results The participants were divided into three groups by tertiles (T1-T3) of urinary PAHs hydroxy metabolites concentration. The results of generalized linear regression showed that mtDNAcn decreased with the increase of 2-hydroxynaphthalene (2-OHNAP) and 2-hydroxyphenanthrene (2-OHPHE) after adjusting for confounding factors (β=-0.240, 95% CI: -0.400--0.081; β=-0.236, 95% CI: -0.412--0.059), and compared with individuals with the lowest levels of urinary 2-OHPHE, those in the highest tertile subgroups of 2-OHPHE had increased TC levels (β=0.335, 95% CI: 0.084-0.587). Compared with individuals with the lowest levels of urinary 2-hydroxyfluorene (2-OHFLU) those in the highest tertile subgroups of 2-OHFLU had increased TG levels 0.357 (β=0.357, 95% CI: 0.102-0.612). Compared with individuals with the lowest levels of urinary 1-hydroxynaphthalene (1-OHNAP) those in the middle of the highest tertile subgroups of 1-OHNAP had decreased HDL-C levels (β=-0.232, 95% CI: -0.430--0.035, β=-0.615, 95% CI: -0.858--0.373). The results of mediating effect analysis showed that the effect of 2-OHPHE on TC levels may be mediated by the reduction of mtDNAcn, with a mediation ratio of 12.61%. Conclusions PAHs exposure in coke-oven plant workers may adversely affect blood lipids by decreasing mtDNAcn in peripheral blood. -
表 1 研究对象的基本情况a
Table 1. Basic characteristics of the study participants a
变量 合计(N=661) mtDNAcn P值b 低(<0.59) 中(0.59~<0.88) 高(≥0.88) 年龄(岁) 37(17.00) 42(18.00) 34(16.00) 42(17.00) 0.016 BMI(kg/m2) 24.57(4.48) 24.44(4.19) 24.54(4.87) 24.71(4.64) 0.604 性别 男 445(68.9) 151(70.0) 144(66.2) 150(70.5) 0.699 女 216(31.1) 70(30.0) 76(33.8) 70(29.5) 教育程度 高中及以下 308(53.5) 103(52.4) 86(46.4) 119(61.3) 0.006 高中以上 353(46.5) 118(47.6) 134(53.6) 101(38.7) 饮酒情况 否 468(68.3) 159(68.9) 155(68.1) 154(67.9) 0.938 是 193(31.7) 62(31.1) 65(31.9) 66(32.1) 锻炼情况 不锻炼 213(31.9) 74(34.2) 62(27.0) 77(34.2) 0.608 偶尔锻炼 263(37.4) 85(35.2) 96(41.3) 82(36.1) 经常锻炼 185(30.6) 62(30.6) 62(31.7) 61(29.7) 尿可替宁(ng/mL) 55.31(1 413.95) 66.18(1 146.62) 44.76(1 390.34) 68.99(1 693.39) 0.501 尿OH-PAHs(ng/mL) 2-OHNAP 0.30(0.56) 0.39(0.64) 0.30(0.61) 0.23(0.39) 0.002 1-OHNAP 0.03(0.05) 0.03(0.05) 0.03(0.05) 0.03(0.05) 0.933 3-OHFLU 0.03(0.04) 0.03(0.04) 0.03(0.04) 0.04(0.05) 0.154 2-OHFLU 0.15(0.22) 0.14(0.21) 0.15(0.22) 0.15(0.23) 0.489 2-OHPHE 0.20(0.21) 0.19(0.21) 0.22(0.23) 0.18(0.20) 0.090 9-OHPHE 0.11(0.11) 0.10(0.11) 0.12(0.12) 0.12(0.11) 0.008 1-OHPHE 0.06(0.08) 0.05(0.07) 0.07(0.08) 0.06(0.07) 0.015 1-OHPYR 0.09(0.11) 0.09(0.10) 0.09(0.09) 0.10(0.15) 0.162 血脂指标(mmol/L) TC 4.87(1.17) 4.94(1.21) 4.78(1.28) 4.88(1.08) 0.382 TG 1.22(0.80) 1.27(0.72) 1.19(0.78) 1.21(0.89) 0.822 HDL-C 1.26(0.26) 1.28(0.29) 1.27(0.24) 1.24(0.25) 0.520 LDL-C 2.90(1.04) 2.99(1.07) 2.83(1.07) 2.90(1.02) 0.485 注:a数据以[n(%)]或[M(IQR)]表达。b P值通过分类变量的χ2检验和数值变量的Kruskal-Wallis H检验得到。 表 2 尿中OH-PAHs与血脂指标之间的关系
Table 2. The associations of urinary OH-PAHs and blood lipid indicators
尿OH-PAHs(ng/mL) 血脂β(95% CI)值a TC TG HDL-C LDL-C 2-OHNAP T1(<0.17) 0.000 0.000 0.000 0.000 T2(0.17~<0.51) 0.043(-0.146~0.231) 0.158(-0.035~0.350) 0.201(0.005~0.397) -0.140(-0.331~0.050) T3(≥0.51) -0.061(-0.288~0.167) 0.133(-0.100~0.365) 0.484(0.248~0.721) -0.298(-0.528~-0.069) P趋势值 0.406 0.655 < 0.001 0.025 1-OHNAP T1(<0.01) 0.000 0.000 0.000 0.000 T2(0.01~<0.05) -0.091(-0.282~0.099) -0.121(-0.315~0.074) -0.232(-0.430~-0.035) -0.037(-0.229~0.155) T3(≥0.05) 0.043(-0.191~0.276) -0.075(-0.313~0.164) -0.615(-0.858~-0.373) 0.116(-0.119~0.352) P趋势值 0.381 0.946 < 0.001 0.335 3-OHFLU T1(<0.02) 0.000 0.000 0.000 0.000 T2(0.03~<0.04) 0.132(-0.058~0.322) -0.048(-0.242~0.146) 0.021(-0.177~0.218) 0.140(-0.052~0.331) T3(≥0.04) -0.035(-0.260~0.190) -0.169(-0.399~0.061) 0.269(0.035~0.503) -0.071(-0.298~0.156) P趋势值 0.276 0.057 0.009 0.209 2-OHFLU T1(<0.09) 0.000 0.000 0.000 0.000 T2(0.09~<0.22) 0.015(-0.176~0.205) 0.093(-0.102~0.287) -0.218(-0.416~-0.02) 0.150(-0.042~0.342) T3(≥0.22) 0.045(-0.205~0.295) 0.357(0.102~0.612) -0.230(-0.489~0.030) 0.363(0.111~0.615) P趋势值 0.479 0.002 0.134 0.003 2-OHPHE T1(<0.15) 0.000 0.000 0.000 0.000 T2(0.15~<0.27) 0.161(-0.039~0.361) 0.162(-0.042~0.367) 0.062(-0.146~0.270) 0.008(-0.194~0.210) T3(≥0.27) 0.335(0.084~0.587) 0.089(-0.168~0.346) 0.017(-0.245~0.279) 0.162(-0.092~0.416) P趋势值 0.015 0.741 0.968 0.201 9-OHPHE T1(<0.08) 0.000 0.000 0.000 0.000 T2(0.08~<0.15) -0.022(-0.218~0.174) -0.071(-0.272~0.129) -0.048(-0.252~0.156) -0.085(-0.283~0.113) T3(≥0.15) -0.104(-0.327~0.119) -0.049(-0.277~0.179) 0.059(-0.173~0.291) -0.257(-0.482~-0.032) P趋势值 0.357 0.829 0.583 0.022 1-OHPHE T1(<0.04) 0.000 0.000 0.000 0.000 T2(0.04~<0.09) -0.118(-0.318~0.081) 0.070(-0.134~0.274) -0.036(-0.243~0.172) -0.181(-0.382~0.021) T3(≥0.09) -0.227(-0.473~0.019) -0.136(-0.388~0.115) 0.038(-0.218~0.294) -0.201(-0.450~0.047) P趋势值 0.092 0.150 0.826 0.218 1-OHPYR T1(<0.07) 0.000 0.000 0.000 0.000 T2(0.07~<0.13) -0.001(-0.191~0.190) 0.026(-0.168~0.221) -0.050(-0.248~0.148) -0.062(-0.254~0.130) T3(≥0.13) -0.041(-0.266~0.185) 0.040(-0.191~0.270) 0.140(-0.095~0.375) -0.244(-0.472~-0.016) P趋势值 0.700 0.616 0.193 0.019 注:a模型调整了年龄、性别、教育程度、尿中可替宁水平、饮酒情况、BMI、体育锻炼、做饭时家中油烟情况、家庭人均月收入、饮食习惯(油、甜食、蔬菜摄入情况、水果摄入情况、烟熏食物、吃蒜情况)、高血压患病情况、血糖异常情况以及其他尿OH-PAHs。 表 3 mtDNAcn与血脂指标的关系
Table 3. The associations of mtDNAcn and blood lipid indicators
mtDNAcn 血脂β(95% CI)值a TC TG HDL-C LDL-C mtDNAcn 连续型变量 -0.107(-0.214~-0.0 001) -0.045(-0.155~0.065) -0.037(-0.151~0.076) -0.116(-0.225~-0.006) T1(<0.59) 0.000 0.000 0.000 0.000 T2(0.59~<0.88) -0.077(-0.251~0.097) -0.074(-0.258~0.110) -0.011(-0.189~0.168) 0.065(-0.113~0.244) T3(≥0.88) -0.178(-0.352~-0.005) -0.104(-0.287~0.081) -0.093(-0.272~0.085) 0.010(-0.168~0.189) P值b 0.050 0.421 0.517 0.039 注:a模型调整了年龄、性别、教育程度、尿中可替宁水平、饮酒情况、BMI、体育锻炼、做饭时家中油烟情况、家庭人均月收入、饮食习惯(油、甜食、蔬菜摄入情况、水果摄入情况、烟熏食物、吃蒜情况)、高血压患病情况、血糖异常情况以及其他尿OH-PAHs; b Z转换mtDNAcn作为自变量,Z转换血脂指标水平作为因变量,采用广义线性回归模型得到的P值。 表 4 mtDNAcn在2-OHPHE、2-OHNAP与血脂水平中的中介效应a
Table 4. Mediating effects of mtDNAcn on the association between 2-OHPHE, 2-OHNAP and blood lipid levels a
血脂 OH-PAHs(ng/mL) 总效应b 直接效应c 中介检验d 中介比例 TC 2-OHPHE 0.091(-0.038~0.220) 0.079(-0.050~0.209) 0.012(0.001~0.027) 12.61% HDL-C 2-OHNAP 0.088(0.012~0.163) 0.087(0.011~0.163) 0.001(-0.002~0.005) ― LDL-C 2-OHNAP -0.023(-0.097~0.051) -0.026(-0.099~0.048) 0.003(-0.002~0.010) ― 注:a模型调整了年龄、性别、教育程度、尿中可替宁水平、饮酒情况、BMI、体育锻炼、做饭时家中油烟情况、家庭人均月收入、饮食习惯(油、甜食、蔬菜摄入情况、水果摄入情况、烟熏食物、吃蒜情况)、高血压患病情况、血糖异常情况以及其他尿OH-PAHs; b在不调整mtDNAcn的情况下,尿中2-OHPHE或2-OHNAP与血脂指标的总效应; c在调整了mtDNAcn的情况下,尿中2-OHPHE或2-OHNAP与血脂指标的直接效应; d通过使用PRODCLIN程序计算外周血mtDNAcn对2-OHPHE或2-OHNAP和血脂指标之间关系的中介效应的置信区间来估计中介检验。 -
[1] 中国成人血脂异常防治指南修订联合委员会. 中国成人血脂异常防治指南(2016年修订版)[J]. 中国循环杂志, 2016, 31(10): 937-950. DOI: 10.3969/j.issn.1000-3614.2016.10.001.Chinese Joint Committee for the Revision of guidelines for the prevention and treatment of dyslipidemia in adults. Guidelines for prevention and treatment of dyslipidemia in Chinese adults (Revised in 2016)[J]. Chin Circ J, 2016, 31(10): 937-950. DOI: 10.3969/j.issn.1000-3614.2016.10.001. [2] Moran A, Gu DF, Zhao D, et al. Future cardiovascular disease in China: Markov model and risk factor scenario projections from the coronary heart disease policy model-China[J]. Circ Cardiovasc Qual Outcomes, 2010, 3(3): 243-252. DOI: 10.1161/CIRCOUTCOMES.109.910711. [3] Simkhovich BZ, Kleinman MT, Kloner RA. Air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms[J]. J Am Coll Cardiol, 2008, 52(9): 719-726. DOI: 10.1016/j.jacc.2008.05.029. [4] Ashar FN, Zhang YY, Longchamps RJ, et al. Association of mitochondrial DNA copy number with cardiovascular disease[J]. JAMA Cardiol, 2017, 2(11): 1247-1255. DOI: 10.1001/jamacardio.2017.3683. [5] Yakes FM, van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress[J]. PNAS, 1997, 94(2): 514-519. DOI: 10.1073/pnas.94.2.514. [6] Wallace DC. Genetics: Mitochondrial DNA in evolution and disease[J]. Nature, 2016, 535(7613): 498-500. DOI: 10.1038/nature18902. [7] 成琳. 孕期PAHs暴露与脐血5-hmC及新生儿神经行为发育关系研究[D]. 太原: 山西医科大学, 2018.Cheng L. Prenanal PAHs exposure, 5-hmC in umbilical cord blood and neonatal neurobehavioral development[D]. Taiyuan: Shanxi Medical University, 2018. [8] Tofighi D, MacKinnon DP. RMediation: an R package for mediation analysis confidence intervals[J]. Behav Res Methods, 2011, 43(3): 692-700. DOI: 10.3758/s13428-011-0076-x. [9] Zhou Y, Mu G, Liu YW, et al. Urinary polycyclic aromatic hydrocarbon metabolites, Club cell secretory protein and lung function[J]. Environ Int, 2018, 111: 109-116. DOI: 10.1016/j.envint.2017.11.016. [10] Poursafa P, Amin MM, Hajizadeh Y, et al. Association of atmospheric concentrations of polycyclic aromatic hydrocarbons with their urinary metabolites in children and adolescents[J]. Environ Sci Pollut Res Int, 2017, 24(20): 17136-17144. DOI: 10.1007/s11356-017-9315-8. [11] Ranjbar M, Rotondi MA, Ardern CI, et al. Urinary biomarkers of polycyclic aromatic hydrocarbons are associated with cardiometabolic health risk[J]. PLoS One, 2015, 10(9): e0137536. DOI: 10.1371/journal.pone.0137536. [12] Wang L, Hou J, Hu C, et al. Mediating factors explaining the associations between polycyclic aromatic hydrocarbons exposure, low socioeconomic status and diabetes: a structural equation modeling approach[J]. Sci Total Environ, 2019, 648: 1476-1483. DOI: 10.1016/j.scitotenv.2018.08.255. [13] Alhamdow A, Lindh C, Albin M, et al. Early markers of cardiovascular disease are associated with occupational exposure to polycyclic aromatic hydrocarbons[J]. Sci Rep, 2017, 7(1): 9426. DOI: 10.1038/s41598-017-09956-x. [14] Joo JH, Lee DW, Choi DW, et al. Association between night work and dyslipidemia in South Korean men and women: a cross-sectional study[J]. Lipids Health Dis, 2019, 18(1): 75. DOI: 10.1186/s12944-019-1020-9. [15] Alexander DL, Ganem LG, Fernandez-Salguero P, et al. Aryl-hydrocarbon receptor is an inhibitory regulator of lipid synthesis and of commitment to adipogenesis[J]. J Cell Sci, 1998, 111(Pt 22): 3311-3322. DOI: 10.1242/jcs.111.22.3311. [16] Kwack SJ, Lee BM. Correlation between DNA or protein adducts and benzo[a]Pyrene diol epoxide I-triglyceride adduct detected in vitro and in vivo[J]. Carcinogenesis, 2000, 21(4): 629-632. DOI: 10.1093/carcin/21.4.629. [17] Clay Montier LL, Deng JJ, Bai YD. Number matters: control of mammalian mitochondrial DNA copy number[J]. J Genet Genom, 2009, 36(3): 125-131. DOI: 10.1016/S1673-8527(08)60099-5. [18] Pieters N, Koppen G, Smeets K, et al. Decreased mitochondrial DNA content in association with exposure to polycyclic aromatic hydrocarbons in house dust during wintertime: from a population enquiry to cell culture[J]. PLoS One, 2013, 8(5): e63208. DOI: 10.1371/journal.pone.0063208. [19] Bansal S, Leu AN, Gonzalez FJ, et al. Mitochondrial targeting of cytochrome P450(CYP) 1B1 and its role in polycyclic aromatic hydrocarbon-induced mitochondrial dysfunction[J]. J Biol Chem, 2014, 289(14): 9936-9951. DOI: 10.1074/jbc.M113.525659. [20] Lee JY, Lee DC, Im JA, et al. Mitochondrial DNA copy number in peripheral blood is independently associated with visceral fat accumulation in healthy young adults[J]. Int J Endocrinol, 2014, 2014: 586017. DOI: 10.1155/2014/586017. -