Analysis of related factors of adverse birth outcomes of living newborns from 2016 to 2020 in Guiping County, Guangxi, China
-
摘要:
目的 了解广西壮族自治区(简称广西)桂平市新生儿出生体重变化、不良出生结局流行特征以及相关影响因素,为下一步促进新生儿健康提供科学依据。 方法 收集2016年1月1日—2020年12月31日所有在桂平市人民医院出生活产新生儿数据,通过R 4.1.2统计软件,采用ggplot2、χ2检验、趋势χ2检验、t检验和logistic回归分析模型进行描述及统计分析。 结果 共有25 958名新生儿纳入研究,平均出生体重为(3 054±515) g,低出生体重率为10.38%,巨大儿率为2.07%,早产率为11.09%。女婴、农村地区、高危妊娠是低出生体重危险因素(OR=1.81, 95% CI:1.61~2.04; OR=1.56, 95% CI: 1.27~1.90; OR=1.70,95% CI:1.44~2.00),冬天出生、二胎、三胎及以上、产检次数≥8次是低出生体重保护因素(OR=0.77,95% CI:0.65~0.92;OR=0.55,95% CI:0.48~0.62; OR=0.50, 95% CI:0.42~0.59; OR=0.78, 95% CI:0.67~0.91);冬天出生、母亲年龄为20~ < 35岁和≥35岁、二胎、三胎及以上、高危妊娠是巨大儿发生危险因素(OR=1.59, 95% CI:1.21~2.08; OR=2.94, 95% CI:1.29~6.71; OR=3.16, 95% CI:1.35~7.38; OR=1.74, 95% CI:1.37~2.22; OR=1.73, 95% CI:1.31~2.29; OR=3.53, 95% CI:2.66~4.96);农村地区、父亲为其他少数民族、高危妊娠、多胎儿是新生儿早产的危险因素(OR=1.18, 95% CI:1.01~1.37; OR=1.53, 95% CI:1.03~2.28; OR=10.20, 95% CI:8.29~12.55; OR=7.05, 95% CI:6.17~8.05),女婴、二胎、三胎及以上、产检次数≥8次是早产保护因素(OR=0.91, 95% CI:0.83~0.99; OR= 0.86, 95% CI:0.77~0.95; OR=0.87, 95% CI:0.77~0.98; OR=0.37, 95% CI:0.33~0.42)。 结论 广西桂平市新生儿早产率具有下降趋势,但是低出生体重率及巨大儿率仍然平稳甚至上升,应加强影响因素因果关联的深入研究并及早干预,促进新生儿健康。 Abstract:Objective To understand the changing of newborns' birth weight, the characteristics and the related factors of adverse birth outcomes in Guiping County, providing scientific evidence to promote newborns' health in the future. Methods The data of newborns were collected from Guiping People's hospital from January first, 2016 to December 31st, 2020. R 4.1.2 version software was used for data description and statistic testing, which included ggplot2, chi-square test, trend chi-square test, t-test, and logistic regression. Results There were 25 958 newborns included in the study, with a mean birth weight of (3 054±515) g. The incidence of low birth weight was 10.38%, while the incidence of macrosomia was 2.07%, and the incidence of preterm birth was 11.09%, respectively. Female infants, living in rural areas, and having a high-risk pregnancy were risk factors for low birth weight(OR=1.81, 95% CI: 1.61-2.04; OR=1.56, 95% CI: 1.27-1.90; OR=1.70, 95% CI: 1.44-2.00, respectively); while birth in winter, the second or third parity, and frequent obstetric examinations were protective factors for low birth weight (OR=0.77, 95% CI: 0.65-0.92; OR=0.55, 95% CI: 0.48-0.62; OR=0.50, 95% CI: 0.42-0.59; OR=0.78, 95% CI: 0.67-0.91, respectively). In addition, birth in winter, maternal age 20- < 35 years old and ≥35 years old, the second or third parity, and having high-risk pregnancy were risk factors for macrosomia (OR=1.59, 95% CI: 1.21-2.08; OR=2.94, 95% CI: 1.29-6.71; OR=3.16, 95% CI: 1.35-7.38; OR=1.74, 95% CI: 1.37-2.22; OR=1.73, 95% CI: 1.31-2.29; OR=3.53, 95% CI: 2.66-4.96, respectively). Besides, living in rural areas, paternal ethnicity are other ethnic minorities, having a high-risk pregnancy and multiple fetuses were risk factors for neonatal preterm birth (OR=1.18, 95% CI: 1.01-1.37; OR=1.53, 95% CI: 1.03-2.28; OR=10.20, 95% CI: 8.29-12.55; OR=7.05, 95% CI: 6.17-8.05, respectively), while female infants, the second or third parity, and the number of obstetric examinations were protective factors for preterm birth (OR=0.91, 95% CI: 0.83-0.99; OR= 0.86, 95% CI: 0.77-0.95; OR=0.87, 95% CI: 0.77-0.98; OR=0.37, 95% CI: 0.33-0.42, respectively). Conclusions The incidence of preterm birth has decreased during these five years. However, the incidence of low birth weight and macrosomia was still stable or even increasing. It is necessary to carry out high-quality studies to access the causality of related factors and intervention measures to promote newborn health in the future. -
Key words:
- Low birth weight /
- Preterm birth /
- Macrosomia /
- Related factors
-
表 1 2016—2020年广西桂平新生儿一般人口学特征[n(%)]
Table 1. The demographic distribution of newborns in Guiping County, Guangxi, 2016-2020 [n(%)]
变量 新生儿 性别 t/χ2值 P值 男 女 人数 25 958(100.00) 13 794(53.14) 12 163(46.86) 出生体重(x±s, g) 3 054±515 3 108±520 2 992±502 18.15 < 0.001 出生孕周(x±s, 周) 38.34±1.90 38.26±1.90 38.43±1.88 -7.26 < 0.001 母亲年龄(x±s, 岁) 29.11±5.87 29.25±5.86 28.95±5.88 4.13 < 0.001 产前血红蛋白 106.91±5.74 106.91±5.67 106.92±5.82 -0.12 0.900 是否早产 8.98 0.003 否 23 080(88.91) 12 189(88.36) 10 891(89.54) 是 2 878(11.09) 1 605(11.64) 1 272(10.46) 出生体重类型 80.26 < 0.001 正常体重 22 726(87.55) 12 133(87.96) 10 593(87.09) 低出生体重 2 695(10.38) 1 293(9.37) 1 401(11.52) 巨大儿 537(2.07) 368(2.67) 169(1.39) 胎次 25.50 < 0.001 首胎 10 268(39.55) 5 295(38.39) 4 972(40.88) 二胎 10 590(40.80) 5 650(40.96) 4 940(40.61) 三胎及以上 5 100(19.65) 2 849(20.65) 2 251(18.51) 产检次数(次) 0.86 0.354 < 8 4100(15.80) 2 206(15.99) 1 894(15.57) ≥8 21857(84.20) 11 588(84.01) 10 269(84.43) 是否多胎 0.28 0.594 否 24 728(95.27) 13 150(95.33) 11 578(95.19) 是 1 229(4.73) 644(4.67) 585(4.81) 母亲民族 0.40 0.817 汉族 23 912(92.12) 12 702(92.08) 11 209(92.16) 壮族 1 768(6.81) 939(6.81) 829(6.82) 其他 278(1.07) 153(1.11) 125(1.03) 父亲民族 0.53 0.768 汉族 23 680(91.23) 12 587(91.25) 11 093(91.2) 壮族 1 971(7.59) 1 039(7.53) 932(7.66) 其他 307(1.18) 168(1.22) 138(1.13) 母亲常住地 0.23 0.893 桂平市 24 142(93.06) 12 826(93.02) 11 315(93.10) 广西非桂平市 1 218(4.70) 647(4.69) 571(4.70) 外省 582(2.24) 315(2.28) 267(2.20) 居住地类型 10.61 0.001 城市 2 628(10.13) 1 476(10.70) 1 152(9.47) 农村 23 322(89.87) 12 313(89.30) 11 008(90.53) 表 2 2016—2020年广西桂平市新生儿低体重率、巨大儿率影响因素
Table 2. The related factors of newborn's low birth weight and macrosomia in Guiping County, Guangxi, 2016-2020
变量 正常(N=22 726) 低体重儿 巨大儿 例数(n=2 695) OR (95% CI)值 P值 例数(n=537) OR (95% CI)值 P值 年份(年) 2016—2017 9 174(40.37) 1 131(41.97) 1.00 221(41.15) 1.00 2018—2019 9 140(40.22) 1 025(38.03) 1.05(0.91~1.21) 0.507 191(35.57) 0.89(0.71~1.11) 0.300 2020 4 412(19.41) 539(20.00) 1.23(1.04~1.45) 0.016 125(23.28) 1.31(1.01~1.69) 0.039 出生季节 春 4 772(21.00) 595(22.08) 1.00 114(21.23) 1.00 夏 5 613(24.70) 686(25.45) 0.89(0.75~1.05) 0.165 103(19.18) 0.89(0.66~1.19) 0.417 秋 6 648(29.25) 803(29.80) 1.04(0.88~1.22) 0.642 143(26.63) 0.95(0.72~1.26) 0.738 冬 5 693(25.05) 611(22.67) 0.77(0.65~0.92) 0.004 177(32.96) 1.59(1.21~2.08) 0.001 性别 男 12 133(53.39) 1 293(48.00) 1.00 368(68.53) 1.00 女 10 593(46.61) 1 401(52.00) 1.81(1.61~2.04) < 0.001 169(31.47) 0.50(0.41~0.61) < 0.001 母亲年龄(岁) < 20 1 099(4.84) 161(5.97) 1.00 8(1.49) 1.00 20~ < 35 17 513(77.06) 1 922(71.32) 0.97(0.74~1.26) 0.809 390(72.63) 2.94(1.29~6.71) 0.010 ≥35 4 114(18.10) 612(22.71) 1.00(0.75~1.35) 0.989 139(25.88) 3.16(1.35~7.38) 0.008 胎次 首胎 8 939(39.33) 1 192(44.23) 1.00 137(25.51) 1.00 二胎 9 403(41.38) 938(34.81) 0.55(0.48~0.62) < 0.001 249(46.37) 1.74(1.37~2.22) < 0.001 三胎及以上 4 384(19.29) 565(20.96) 0.50(0.42~0.59) < 0.001 151(28.12) 1.73(1.31~2.29) < 0.001 产检次数(次) < 8 3 386(14.90) 642(23.82) 1.00 73(13.59) 1.00 ≥8 19 340(85.10) 2 053(76.18) 0.78(0.67~0.91) 0.002 464(86.41) 1.21(0.89~1.64) 0.235 居住地类型 城市 2 365(10.41) 216(8.02) 1.00 47(8.75) 1.00 农村 20 355(89.59) 2 477(91.98) 1.56(1.27~1.90) < 0.001 490(91.25) 1.08(0.79~1.49) 0.620 高危妊娠 否 6 577(34.72) 229(10.02) 1.00 60(12.96) 1.00 是 12 365(65.28) 2 056(89.98) 1.70(1.44~2.00) < 0.001 403(87.04) 3.53(2.66~4.69) < 0.001 注:模型矫正了孕周和多胎妊娠2个因素;母亲民族、父亲民族、母亲常住地、产前血红蛋白差异无统计学意义,未纳入最终模型。 表 3 2016—2020年广西桂平市新生儿早产率影响因素
Table 3. The related factors of newborn's preterm birth in Guiping County, Guangxi, 2016-2020
变量 足月儿(N=23 080) 早产儿 例数(n=2 878) OR (95% CI)值 P值 年份(年) 2016—2017 9 208(39.90) 1 318(45.80) 1.00 2018—2019 9 282(40.21) 1 074(37.32) 0.76(0.68~0.85) < 0.001 2020 4 590(19.89) 486(16.88) 0.62(0.54~0.71) < 0.001 性别 男 12 189(52.81) 1 605(55.79) 1.00 女 10 891(47.19) 1 272(44.21) 0.91(0.83~0.99) 0.034 胎次 首胎 9 203(39.87) 1 065(37.01) 1.00 二胎 9 469(41.03) 1 121(38.95) 0.86(0.77~0.95) 0.004 三胎及以上 4 408(19.10) 692(24.04) 0.87(0.77~0.98) 0.021 产检次数(次) < 8 3 387(14.68) 714(24.81) 1.00 ≥8 19 693(85.32) 2 164(75.19) 0.37(0.33~0.42) < 0.001 父亲民族 汉族 21 067(91.28) 2 613(90.79) 1.00 壮族 1 756(7.61) 215(7.47) 1.04(0.88~1.23) 0.640 其他 257(1.11) 50(1.74) 1.53(1.03~2.28) 0.037 居住地类型 城市 2 369(10.27) 259(9.01) 1.00 农村 20 706(89.73) 2 616(90.99) 1.18(1.01~1.37) 0.038 高危妊娠a 否 6 768(35.09) 98(4.08) 1.00 是 12 522(64.91) 2 302(95.92) 10.20(8.29~12.55) < 0.001 多胎妊娠 否 22 466(97.34) 2 263(78.63) 1.00 是 614(2.66) 615(21.37) 7.05(6.17~8.05) < 0.001 注:a高危妊娠包括妊娠并发症(心血管病、肝肾病、内分泌病、肿瘤及其他);出生季节、母亲年龄、母亲民族、母亲常住地和产检血红蛋白差异无统计学意义,未纳入最终模型。 -
[1] WHO, UNICEF. Low birthweight: country, regional and global estimates[J]. New York New York Unicef, 2004. DOI: i9280638327. [2] Van Deutekom AW, Chinapaw MJM, Jansma EP, et al. The association of birth weight and infant growth with energy balance-related behavior - a systematic review and best-evidence synthesis of human studies[J]. PLoS One, 2017, 12(1): e0168186. DOI: 10.1371/journal.pone.0168186. [3] Liu L, Johnson HL, Cousens S, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000[J]. Lancet, 2012, 379(9832): 2151-2161. DOI: 10.1016/S0140-6736(12)60560-1. [4] Wang Y, Qi F, Jia X, et al. Mortality and burden of disease attributable to cigarette smoking in Qingdao, China[J]. Int J Environ Res Public Health, 2016, 13(9): 898. DOI: 10.3390/ijerph13090898. [5] Eriksen W. Invited commentary: Interpreting associations between high birth weight and later health problems[J]. Am J Epidemiol, 2014, 180(9): 885-887. DOI: 10.1093/aje/kwu243. [6] Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease[J]. N Engl J Med, 2008, 359(1): 61-73. DOI: 10.1056/NEJMra0708473. [7] Chen Y, Li G, Ruan Y, et al. An epidemiological survey on low birth weight infants in China and analysis of outcomes of full-term low birth weight infants[J]. BMC Pregnancy and Childbirth, 2013, 13(1): 242. DOI: 10.1186/1471-2393-13-242. [8] Dong BQ, You JP, Liang QY, et al. Study on the distribution and related factors of birth weight of live births in Guangxi Zhuang Autonomous Region of China from 2016 to 2018[J]. Chin J Prevent Med, 2019, 53(12): 1259-1264. DOI: 10.3760/cma.j.issn.0253-9624.2019.12.011. [9] 龙静铧, 仇小强, 曾小云, 等. 广西平果县和德保县壮族人群低出生体重的影响因素研究[J]. 中华疾病控制杂志, 2017, 21(6): 558-561. DOI: 10.16462/j.cnki.zhjbkz.2017.06.005.Long JH, Qiu XQ, Zeng XY, et al. Analysis on the risk factors for low birth weight infants of Zhuang ethnicity in Pingguo and Debao County of Guangxi Province[J]. Chin J Dis Control Prev, 2017, 21(6): 558-561. DOI: 10.16462/j.cnki.zhjbkz.2017.06.005. [10] Kong L, Chen ZX, Qin YQ, et al. Occurrence and related factors of preterm birth in Guangxi Zhuang Autonomous Region during 2017-2019[J]. Chin Med J, 2020, 100(42): 3338-3341. DOI: 10.3760/cma.j.cn112137-20200804-02276. [11] 丁海燕, 夏木斯叶·木依都力, 李敏超, 等. 舟山市2002-2015年出生体重变化与不良出生结局及影响因素分析[J]. 中华疾病控制杂志, 2018, 22(4): 380-385. DOI: 10.16462/j.cnki.zhjbkz.2018.04.014.Ding HY, Xiamusiye M, Li MC, et al. Analysis of trends of birth weight, and incidence of adverse birth outcomes and relevant factors from 2002 to 2015[J]. Chin J Dis Control Prev, 2018, 22(4): 380-385. DOI: 10.16462/j.cnki.zhjbkz.2018.04.014. [12] Dasinger JH, Alexander BT. Gender differences in developmental programming of cardiovascular diseases[J]. Clin Med, 2016, 130(5): 337. DOI: 10.1042/CS20150611. [13] 雷军, 罗霞, 郑晓红, 等. 丽水市2016-2019年低出生体重发生情况及影响因素分析[J]. 中国儿童保健杂志, 2022, 30(2): 4. DOI: 10.11852/zgetbjzz2021-0424.Lei J, Luo X, Zheng XH, et al. Analysis of the status quo and influencing factors of low birth weight in Lishui City from 2016 to 2019[J]. Chin J Child Health Care, 2022, 30(2): 4. DOI: 10.11852/zgetbjzz2021-0424. [14] 廖芳, 田美玲, 王朔, 等. 妊娠期产前检查次数与低出生体重儿的相关性[J]. 中华疾病控制杂志, 2021, 25(10): 1220-1225. DOI: 10.16462/j.cnki.zhjbkz.2021.10.019.Liao F, Tian ML, Wang S, et al. A study on the relationship between the number of prenatal visits and low birth weight infants[J]. Chin J Dis Control Prev, 2021, 25(10): 1220-1225. DOI: 10.16462/j.cnki.zhjbkz.2021.10.019. [15] 德穷, 吴俣, 张育彤, 等. 西藏藏族孕产妇产前检查次数与低出生体重儿的关联[J]. 中华疾病控制杂志, 2019, 23(11): 1348-1352. DOI:0.16462/j.cnki.zhjbkz.2019.11.010.De Q, Wu Y, Zhang YT, et al. Study on the association between prenatal examinations of Tibetan pregnant women and low birth weight infants[J]. Chin J Dis Control Prev, 2019, 23(11): 1348-1352. DOI: 10.16462/j.cnki.zhjbkz.2019.11.010. [16] Smith LE, Prendergast AJ, Turner PC, et al. Aflatoxin exposure during pregnancy, maternal anemia, and adverse birth outcomes[J]. Am J Trop Med Hyg, 2017, 96(4): 770-776. DOI: 10.4269/ajtmh.16-0730. -