• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大数据生态流行病学理论模型诠释

薛付忠

薛付忠. 大数据生态流行病学理论模型诠释[J]. 中华疾病控制杂志, 2022, 26(10): 1129-1136. doi: 10.16462/j.cnki.zhjbkz.2022.10.004
引用本文: 薛付忠. 大数据生态流行病学理论模型诠释[J]. 中华疾病控制杂志, 2022, 26(10): 1129-1136. doi: 10.16462/j.cnki.zhjbkz.2022.10.004
XUE Fu-zhong. Interpretation of the theoretical model of big data eco-epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(10): 1129-1136. doi: 10.16462/j.cnki.zhjbkz.2022.10.004
Citation: XUE Fu-zhong. Interpretation of the theoretical model of big data eco-epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(10): 1129-1136. doi: 10.16462/j.cnki.zhjbkz.2022.10.004

大数据生态流行病学理论模型诠释

doi: 10.16462/j.cnki.zhjbkz.2022.10.004
基金项目: 

国家重点研发计划 2020YFC2003500

详细信息
    通讯作者:

    薛付忠, E-mail: xuefzh@sdu.edu.cn

  • 中图分类号: R181.2

Interpretation of the theoretical model of big data eco-epidemiology

Funds: 

National Key Research and Development Program of China 2020YFC2003500

More Information
  • 摘要: 当今,数字技术作为一种新型的健康决定因素,它改变了社会、经济、城市和家庭,进而又影响了人类健康;人类进入了一个全新的数字虚拟世界。由此,在大数据生态流行病学理论范式中,现实世界生态流行病学模型与虚拟世界生态流行病学模型,组成既相对独立又相互博弈交互的共同体,它们均以表观遗传为中介,在以基因组为核心的多组学因素、现实世界健康决定因素、虚拟世界健康决定因素间相互博弈和相互依赖;由此形成了众多镶嵌层级内健康决定因素交互博弈的生态流行病学新病因论框架。现实世界与虚拟世界两个生态流行病学模型,通过同一数字健康模型,以数字技术作为“双刃剑”角色而发挥作用。
  • [1] 薛付忠. 大数据生态流行病学理论模型[J]. 中华疾病控制杂志, 2022, 26(10): 1124-1128. DOI: 10.16462/j.cnki.zhjbkz.2022.10.003.

    Xue FZ. The theoretical model of big data eco-epidemiology[J]. Chin J Dis Control Prev, 2022, 26(10): 1124-1128. DOI: 10.16462/j.cnki.zhjbkz.2022.10.003.
    [2] Göran D, Whitehead M. Policies and strategies to promote social equity in health[J]. 1991.
    [3] Coutts C, Hahn M. Green infrastructure, ecosystem services, and human health[J]. Int J Environ Res Public Health, 2015, 12(8): 9768-9798. DOI: 10.3390/ijerph120809768.
    [4] Centers for Disease Control and Prevention. Social Ecological Model (2022)[EB/OL]. (2022-01-18)[2022-07-18]. https://www.cdc.gov/violenceprevention/about/social-ecologicalmodel.html.
    [5] Whitmee S, Haines A, Beyrer C, et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation-Lancet Commission on planetary health[J]. lancet, 2015, 386(10007): 1973-2028. DOI: 10.1016/s0140-6736(15)60901-1.
    [6] Wolfson MC. POHEM: a framework for understanding and modelling the health of human populations[J]. World health statistics quarterly, 1994, 47(3/4): 157-176.
    [7] Schoner J, Chapman J, Brookes A, et al. Bringing health into transportation and land use scenario planning: Creating a National Public Health Assessment Model (N-PHAM)[J]. J Transp Health, 2018, 10: 401-418. DOI: 10.1016/j.jth.2018.04.008.
    [8] Calistri P, Iannetti S, L. Danzetta M, et al. The components of 'One World - One Health' approach[J]. Transbound Emerg Dis, 2013, 60: 4-13. DOI: 10.1111/tbed.12145.
    [9] Woldehanna S, Zimicki S. An expanded One Health model: integrating social science and One Health to inform study of the human-animal interface[J]. Soc Sci Med, 2015, 129: 87-95. DOI: 10.1016/j.socscimed.2014.10.059.
    [10] Destoumieux-Garzón D, Mavingui P, Boetsch G, et al. The one health concept: 10 years old and a long road ahead[J]. Front Vet Sci, 2018: 14. DOI: 10.3389/fvets.2018.00014.
    [11] Van Bruggen AHC, Goss EM, Havelaar A, et al. One Health-Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health[J]. Sci Total Environ, 2019, 664: 927-937. DOI: 10.1016/j.scitotenv.2019.02.091.
    [12] Rice L, Sara R. Updating the determinants of health model in the Information Age[J]. Health Promot Int, 2019, 34(6): 1241-1249. DOI: 10.1093/heapro/day064.
    [13] Korda H, Itani Z. Harnessing social media for health promotion and behavior change[J]. Health Promot Pract, 2013, 14(1): 15-23. DOI: 10.1177/1524839911405850.
    [14] Best P, Manktelow R, Taylor B. Online communication, social media and adolescent wellbeing: A systematic narrative review[J]. Child Youth Serv Rev, 2014, 41: 27-36. DOI: 10.1016/j.childyouth.2014.03.001.
    [15] Smith AK, Conneely KN, Kilaru V, et al. Differential immune system DNA methylation and cytokine regulation in post‐traumatic stress disorder[J]. Am J Med Genet B Neuropsychiatr Genet, 2011, 156(6): 700-708. DOI: 10.1002/ajmg.b.31212.
    [16] Chen GM. The impact of new media on intercultural communication in global context[J]. 2012, 93(1): 79-84. DOI: 10.1111/j.1476-5381.1988.tb11407.x.
    [17] Gretton CHM. The digital revolution: eight technologies that will change health and care (2016)[EB/OL]. (2016-01-30)[2022-07-18]. https://www.kingsfund.org.uk/publications/digital-revolution.
    [18] Robinson SW, Fernandes M, Husi H. Current advances in systems and integrative biology[J]. Comput Struct Biotechnol J, 2014, 11(18): 35-46. DOI: 10.1016/j.csbj.2014.08.007.
    [19] Haring R, Wallaschofski H. Diving through the "-omics": the case for deep phenotyping and systems epidemiology[J]. OMICS, 2012, 16(5): 231-234. DOI: 10.1089/omi.2011.0108.
    [20] Shields RK, Dudley-Javoroski S. Epigenetics and the International Classification of Functioning, Disability and Health model: bridging nature, nurture, and patient-centered population health[J]. Phys Ther, 2022, 102(1): pzab247. DOI: 10.1093/ptj/pzab247.
    [21] March D, Susser E. The eco-in eco-epidemiology[J]. Int J Epidemiol, 2006, 35(6): 1379-1383. DOI: 10.1093/ije/dyl249.
    [22] Zannas AS. Epigenetics as a key link between psychosocial stress and aging: concepts, evidence, mechanisms[J]. Dialogues Clin Neurosci, 2019, 21(4): 389-396. DOI: 10.31887/dcns.2019.21.4/azannas.
    [23] Menon DR, Hammerlindl H, Torrano J, et al. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer[J]. Theranostics, 2020, 10(14): 6261-6277. DOI: 10.7150/thno.42523.
    [24] Uchida Y, Kitayama S, Akutsu S, et al. Optimism and the conserved transcriptional response to adversity[J]. Health Psychol, 2018, 37(11): 1077-1080. DOI: 10.1037/hea0000675.
    [25] Argentieri MA, Nagarajan S, Seddighzadeh B, et al. Epigenetic pathways in human disease: the impact of DNA methylation on stress-related pathogenesis and current challenges in biomarker development[J]. EBioMedicine, 2017, 18: 327-350. DOI: 10.1016/j.ebiom.2017.03.044.
    [26] Blacker CJ, Frye MA, Morava E, et al. A review of epigenetics of PTSD in comorbid psychiatric conditions[J]. Genes, 2019, 10(2): 140. DOI: 10.3390/genes10020140.
    [27] Morris G, Berk M, Maes M, et al. Socioeconomic deprivation, adverse childhood experiences and medical disorders in adulthood: mechanisms and associations[J]. Mol Neurobiol, 2019, 56(8): 5866-5890. DOI: 10.1007/s12035-019-1498-1.
    [28] Park C, Rosenblat JD, Brietzke E, et al. Stress, epigenetics and depression: a systematic review[J]. Neurosci Biobehav Rev, 2019, 102: 139-152. DOI: 10.1016/j.neubiorev.2019.04.010.
    [29] Aten S, Page CE, Kalidindi A, et al. miR-132/212 is induced by stress and its dysregulation triggers anxiety-related behavior[J]. Neuropharmacology, 2019, 144: 256-270. DOI: 10.1016/j.neuropharm.2018.10.020.
    [30] Lee RS, Oswald LM, Wand GS. Early life stress as a predictor of co-occurring alcohol use disorder and post-traumatic stress disorder[J]. Alcohol Res, 2018, 39(2): 147-159.
    [31] Lam D, Ancelin M-L, Ritchie K, et al. DNA methylation and genetic variation of the angiotensin converting enzyme (ACE) in depression[J]. Psychoneuroendocrinology, 2018, 88: 1-8. DOI: 10.1016/j.psyneuen.2017.11.003.
    [32] Bustamante AC, Aiello AE, Guffanti G, et al. FKBP5 DNA methylation does not mediate the association between childhood maltreatment and depression symptom severity in the Detroit Neighborhood Health Study[J]. J Psychiatr Res, 2018, 96: 39-48. DOI: 10.1016/j.jpsychires.2017.09.016.
    [33] Alexander N, Kirschbaum C, Wankerl M, et al. Glucocorticoid receptor gene methylation moderates the association of childhood trauma and cortisol stress reactivity[J]. Psychoneuroendocrinology, 2018, 90: 68-75. DOI: 10.1016/j.psyneuen.2018.01.020.
    [34] Cowan CS, Callaghan BL, Kan JM, et al. The lasting impact of early‐life adversity on individuals and their descendants: Potential mechanisms and hope for intervention[J]. Genes Brain Behav, 2016, 15(1): 155-168. DOI: 10.1111/gbb.12263.
    [35] Scorza P, Duarte CS, Hipwell AE, et al. Research review: intergenerational transmission of disadvantage: epigenetics and parents' childhoods as the first exposure[J]. J Child Psychol Psychiatry, 2019, 60(2): 119-132. DOI: 10.1111/jcpp.12877.
    [36] Kang HJ, Bae KY, Kim SW, et al. Longitudinal associations between glucocorticoid receptor methylation and late-life depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 84: 56-62. DOI: 10.1016/j.pnpbp.2018.02.004.
    [37] Malepfane N, Muchaonyerwa P. Hair from different ethnic groups vary in elemental composition and nitrogen and phosphorus mineralisation in soil[J]. Environ Monit Assess, 2017, 189(2): 76. DOI: 10.1007/s10661-017-5776-y.
    [38] Roufayel R, Kadry S. Molecular chaperone HSP70 and key regulators of apoptosis-a review[J]. Curr Mol Med, 2019, 19(5): 315-325. DOI: 10.2174/1566524019666190326114720.
    [39] Holmes JrL, Shutman E, Chinaka C, et al. Aberrant epigenomic modulation of glucocorticoid receptor gene (NR3C1) in early life stress and major depressive disorder correlation: systematic review and quantitative evidence synthesis[J]. Int J Environ Res Public Health, 2019, 16(21): 4280. DOI: 10.3390/ijerph16214280.
    [40] Rabbie R, Lau D, White R M, et al. Unraveling the cartography of the cancer ecosystem[M]. Springer. 2021: 1-9.
    [41] Wang Y, Ma S, Ruzzo WL. Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities[J]. Sci Rep, 2020, 10(1): 3490. DOI: 10.1038/s41598-020-60384-w.
    [42] Gatenbee CD, Minor ES, Slebos RJ, et al. Histoecology: Applying ecological principles and approaches to describe and predict tumor ecosystem dynamics across space and time[J]. Cancer Control, 2020, 27(3): 1073274820946804. DOI: 10.1177/1073274820946804.
    [43] Hochberg ME. An ecosystem framework for understanding and treating disease[J]. Evol Med Public Health, 2018, 2018(1): 270-286. DOI: 10.1093/emph/eoy032.
    [44] Repetti RL, Taylor SE, Seeman TE. Risky families: family social environments and the mental and physical health of offspring[J]. Psychol bull, 2002, 128(2): 330-366. DOI: 10.1037/0033-2909.128.2.330.
    [45] Felitti VJ, Anda RF, Nordenberg D, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The Adverse Childhood Experiences (ACE) Study[J]. Am J Prev Med, 1998, 14(4): 245-258. DOI: 10.1016/s0749-3797(98)00017-8.
    [46] Theall KP, Brett ZH, Shirtcliff EA, et al. Neighborhood disorder and telomeres: Connecting children's exposure to community level stress and cellular response[J]. Soc Sci Med, 2013, 85: 50-58. DOI: 10.1016/j.socscimed.2013.02.030.
    [47] Theall KP, Shirtcliff EA, Dismukes AR, et al. Association between neighborhood violence and biological stress in children[J]. JAMA Pediatr, 2017, 171(1): 53-60. DOI: 10.1001/jamapediatrics.2016.2321.
    [48] Rasmussen LJH, Moffitt TE, Arseneault L, et al. Association of adverse experiences and exposure to violence in childhood and adolescence with inflammatory burden in young people[J]. JAMA pediatr, 2020, 174(1): 38-47. DOI: 10.1001/jamapediatrics.2019.3875.
    [49] Reuben A, Sugden K, Arseneault L, et al. Association of neighborhood disadvantage in childhood with DNA methylation in young adulthood[J]. JAMA Netw Open, 2020, 3(6): e206095-e206095. DOI: 10.1001/jamanetworkopen.2020.6095.
    [50] Evans Gw C S. Environmental Stress[M]. Elsevier, 2004: 815-824.
    [51] Ellen IG, Mijanovich T, Dillman K. Neighborhood effects on health: exploring the links and assessing the evidence[J]. Journal of urban affairs, 2001, 23(3-4): 391-408. DOI: 10.1111/0735-2166.00096.
    [52] Ford AE, Graham H, White PC. Integrating human and ecosystem health through ecosystem services frameworks[J]. EcoHealth, 2015, 12(4): 660-671. DOI: 10.1007/s10393-015-1041-4.
    [53] Prescott SL, Logan AC. Planetary health: from the wellspring of holistic medicine to personal and public health imperative[J]. Explore, 2019, 15(2): 98-106. DOI: 10.1016/j.explore.2018.09.002.
    [54] Lane RD, Wager TD. The new field of Brain-Body Medicine: What have we learned and where are we headed?[J]. Neuroimage, 2009, 47(3): 1135-1140. DOI: 10.1016/j.neuroimage.2009.06.013.
    [55] Bateson G. Form, substance and difference[J]. Essential readings in biosemiotics, 1970, 501.
    [56] Gibbons SM. Defining microbiome health through a host lens[J]. mSystems, 2019, 4(3): e00155-00119. DOI: 10.1128/msystems.00155-19.
    [57] Guidolin D, Anderlini D, Marcoli M, et al. A new integrative theory of brain-body-ecosystem medicine: From the hippocratic holistic view of medicine to our modern society[J]. Int J Environ Res Public Health, 2019, 16(17): 3136. DOI: 10.3390/ijerph16173136.
    [58] Lovelock J. Gaia: the world as living organism[J]. New scientist (1971), 1986, 112(1539): 25-28.
    [59] Levy DJ, Heissel JA, Richeson JA, et al. Psychological and biological responses to race-based social stress as pathways to disparities in educational outcomes[J]. Am Psychol, 2016, 71(6): 455-473. DOI: 10.1037/a0040322.
    [60] Grace D, Lindahl J, Wanyoike F, et al. Poor livestock keepers: ecosystem-poverty-health interactions[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1725): 20160166. DOI: 10.1098/rstb.2016.0166.
    [61] Karger S, Bull C, Enticott J, et al. Options for improving low birthweight and prematurity birth outcomes of indigenous and culturally and linguistically diverse infants: a systematic review of the literature using the social-ecological model[J]. BMC Pregnancy Childb, 2022, 22(1): 3. DOI: 10.1186/s12884-021-04307-1.
    [62] Nonyel NP, Wisseh C, Riley AC, et al. Conceptualizing social ecological model in pharmacy to address racism as a social determinant of health[J]. Am J Pharm Educ, 2021, 85(9): 8584. DOI: 10.5688/ajpe8584.
    [63] Durkin A, Schenck C, Narayan Y, et al. Prevention of firearm injury through policy and law: The social ecological model[J]. J Law Med Ethics, 2020, 48(4_suppl): 191-197. DOI: 10.1177/1073110520979422.
    [64] Vasudevan S, Saha A, Tarver ME, et al. Digital biomarkers: Convergence of digital health technologies and biomarkers[J]. NPJ Digit Med, 2022, 5(1): 36. DOI: 10.1038/s41746-022-00583-z.
    [65] Manta C, Patrick-Lake B, Goldsack JC. Digital measures that matter to patients: a framework to guide the selection and development of digital measures of health[J]. Digit Biomark, 2020, 4(3): 69-77. DOI: 10.1159/000509725.
    [66] Rodarte C. Pharmaceutical perspective: how digital biomarkers and contextual data will enable therapeutic environments[J]. Digit Biomark, 2017, 1(1): 73-81. DOI: 10.1159/000479951.
    [67] Onnela JP, Rauch SL. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health[J]. Neuropsychopharmacology, 2016, 41(7): 1691-1696. DOI: 10.1038/npp.2016.7.
    [68] Coghlan S, D'alfonso S. Digital Phenotyping: an Epistemic and Methodological Analysis[J]. Philos Technol, 2021, 34(4): 1905-1928. DOI: 10.1007/s13347-021-00492-1.
    [69] Ji Q. The design of the lightweight smart home system and interaction experience of products for middle-aged and elderly users in smart cities[J]. Comput Intell Neurosci, 2022, 2022: 1279351. DOI: 10.1155/2022/1279351.
    [70] Mekni M, Haynes D. Smart Community Health: A Comprehensive Community Resource Recommendation Platform[J]. Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2020, 5: 614-624. DOI: 10.5220/0009118306140624.
    [71] Mcgowan AK, Kramer K, Teitelbaum JB. Healthy People: the role of law and policy in the nation's public health agenda[J]. J Law Med Ethics, 2019, 47(S2): 63-67. DOI: 10.1177/1073110519857320.
    [72] Song C, Wu X. Smart city+ IoT standardization application practice model and realization of key technologies[J]. Comput Intell Neurosci, 2022, 2022: 8070939. DOI: 10.1155/2022/8070939.
    [73] Lyu Y, Peng Y, Liu H, et al. Impact of Digital Economy on the Provision Efficiency for Public Health Services: Empirical Study of 31 Provinces in China[J]. Int J Environ Res Public Health, 2022, 19(10): 5978. DOI: 10.3390/ijerph19105978.
    [74] Jiang C, Chang H, Shahzad I. Digital Economy and Health: Does Green Technology Matter in BRICS Economies?[J]. Front Public Health, 2021, 9: 827915. DOI: 10.3389/fpubh.2021.827915.
    [75] Gajovic' S, Svalastog AL. When communicating health-related knowledge, beware of the black holes of the knowledge landscapes geography[J]. Croat Med J, 2016, 57(5): 504-509. DOI: 10.3325/cmj.2016.57.504.
    [76] Svalastog AL, Donev D, Kristoffersen NJ, et al. Concepts and definitions of health and health-related values in the knowledge landscapes of the digital society[J]. Croat Med J, 2017, 58(6): 431-435. DOI: 10.3325/cmj.2017.58.431.
    [77] Thomas TM, Pollard AJ. Vaccine communication in a digital society[J]. Nat Mater, 2020, 19(4): 476. DOI: 10.1038/s41563-020-0626-7.
    [78] Landers M, Dorsey R, Saria S. Digital endpoints: Definition, benefits, and current barriers in accelerating development and adoption[J]. Digit Biomark, 2021, 5(3): 216-223. DOI: 10.1159/000517885.
    [79] Arora S, Venkataraman V, Zhan A, et al. Detecting and monitoring the symptoms of Parkinson's disease using smartphones: A pilot study[J]. Parkinsonism Relat Disord, 2015, 21(6): 650-653. DOI: 10.1016/j.parkreldis.2015.02.026.
    [80] Artusi CA, Mishra M, Latimer P, et al. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases[J]. Parkinsonism Relat Disord, 2018, 46: S53-S56. DOI: 10.1016/j.parkreldis.2017.07.022.
    [81] Zhan A, Mohan S, Tarolli C, et al. Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score[J]. JAMA Neurol, 2018, 75(7): 876-880. DOI: 10.1001/jamaneurol.2018.0809.
    [82] Bradshaw MJ, Farrow S, Motl RW, et al. Wearable biosensors to monitor disability in multiple sclerosis[J]. Neurol Clin Pract, 2017, 7(4): 354-362. DOI: 10.1212/cpj.0000000000000382.
    [83] Voss C, Schwartz J, Daniels J, et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: a randomized clinical trial[J]. JAMA Pediatr, 2019, 173(5): 446-454. DOI: 10.1001/jamapediatrics.2019.0285.
    [84] Bosl WJ, Tager-Flusberg H, Nelson CA. EEG analytics for early detection of autism spectrum disorder: a data-driven approach[J]. Sci Rep, 2018, 8(1): 1-20. DOI: 10.1038/s41598-018-24318-x.
    [85] Haberkamp M, Moseley J, Athanasiou D, et al. European regulators' views on a wearable-derived performance measurement of ambulation for Duchenne muscular dystrophy regulatory trials[J]. Neuromuscul Disord, 2019, 29(7): 514-516. DOI: 10.1016/j.nmd.2019.06.003.
    [86] Redfield MM, Anstrom KJ, Levine JA, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction[J]. N Engl J Med, 2015, 373(24): 2314-2324. DOI: 10.1056/nejmoa1510774.
    [87] United States Food and Drug Administration FDA authorizes first fully interoperable continuous glucose monitoring system, streamlines review pathway for similar devices[EB/OL]. (2018-03-27)[2022-07-18]. https://www.fda.gov/news-events/press-announcements/fda-authorizes-first-fully-interoperable-continuous-glucose-monitoring-system-streamlines-review.
  • 加载中
计量
  • 文章访问数:  312
  • HTML全文浏览量:  166
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 修回日期:  2022-09-02
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回