Effects and interactions of short-term exposure to O3 and meteorological factors on the number of deaths in Ningbo City
-
摘要:
目的 探索O3与气象因素短期暴露对死亡人数的影响及交互作用。 方法 基于宁波市2014―2018年死因、气象及环境监测数据,利用分布滞后非线性模型(distributed lag nonlinear model, DLNM)分析宁波市O3与气象因素短期暴露对死亡人数的影响及交互作用。 结果 低温、低温湿指数(temperature-humidity index, THI)、低风寒指数(wind chill index, WCI)能够增加全因死亡、呼吸系统及循环系统疾病人群的死亡风险;O3短期暴露对全因死亡、呼吸系统及循环系统疾病死亡风险的影响均有统计学意义(均有P<0.05),其效应最大值分别出现在累积滞后06、07和06 d,RR值分别为1.008(95% CI: 1.004~1.011)、1.015(95% CI: 1.007~1.022)和1.009 (95% CI: 1.004~1.014);短期O3暴露与高温、高THI、高WCI对全因死亡、呼吸系统及循环系统疾病人群死亡风险具有协同增强作用,且该效应在≥65岁人群中最为显著。 结论 宁波市O3与气象因素短期暴露对死亡人数存在一定的影响,且存在交互作用,其中≥65岁人群可能为潜在高危人群。 Abstract:Objective To explore the impact and interactions of short-term exposure to O3 and meteorological factors on the number of deaths in Ningbo City. Methods Using cause of death, meteorological, and environmental monitoring data from Ningbo City, Zhejiang Province, a distributed lag nonlinear model (DLNM) was employed to analyze the effects and interactions of short-term exposure to O3 and meteorological factors on the number of deaths. Results Low temperature, low temperature-humidity index (THI), and low wind chill index (WCI) increased the risk of death from all causes, respiratory diseases, and circulatory diseases. Short-term exposure to O3 has a significant effect on the risk of all-cause mortality, respiratory and circulatory mortality (all P < 0.05), with the maximum effect observed at cumulative lag of 06, 07 and 06 days, which were 1.008(95% CI: 1.004-1.011), 1.015(95% CI: 1.007-1.022) and 1.009(95% CI: 1.004-1.014), respectively. Short-term exposure of O3 and high temperature, high THI, and high WCI showed a significant synergistic enhancement effect on the risk of all-cause mortality, respiratory and circulatory diseases, with the most pronounced effect observed in individuals aged ≥65 years. Conclusions Short-term exposure to O3 and meteorological factors in Ningbo has a certain impact on the number of deaths, with significant interactions observed. The population aged ≥65 years may represent a potential high-risk group. -
Key words:
- O3 /
- Meteorological factors /
- Interaction /
- Death risk /
- Distributed lag nonlinear model
-
表 1 2014―2018年研究人群的死亡人数、污染物及气象要素的一般情况
Table 1. The general situation of deaths, pollutants and meteorological elements of study population from 2014 to 2018
x±s IQR min P25 P50 P75 max 日均死亡数 全因死亡 102.98±22.08 26.00 15.00 89.00 100.00 115.00 185.00 呼吸系统疾病 14.22±6.20 7.25 0.00 10.00 13.00 17.25 44.00 循环系统疾病 31.05±9.34 12.00 4.00 25.00 30.00 37.00 75.00 污染物浓度(μg/m3) O3(8 h) 94.83±41.29 56.00 6.00 65.00 90.00 121.00 249.00 SO2 12.94±7.03 7.00 4.00 8.00 11.00 15.00 73.00 NO2 39.19±17.66 25.00 6.00 26.00 36.00 51.00 122.00 PM2.5 39.74±25.13 26.00 4.00 23.00 34.00 49.00 219.00 气象条件 日平均气温(℃) 20.14±8.82 14.26 -2.30 12.68 21.30 27.30 38.20 平均相对湿度(%) 79.94±11.36 15.00 23.00 73.00 81.00 88.00 100.00 平均风速(m/s) 1.98±0.94 1.00 0.10 1.40 1.80 2.40 12.00 日照时数(h/d) 2.70±3.61 5.10 0.00 0.00 0.81 5.10 12.70 THI 67.18±14.02 23.60 33.65 55.26 68.85 78.86 95.32 WCI -262.45±212.97 314.03 -946.51 -413.13 -238.26 -99.10 211.71 表 2 不同气象因素水平下O3对疾病死亡人数的影响
Table 2. Effects of O3 on the number of deaths of diseases under different meteorological factors
气象指标 全因死亡RR值(95% CI) 呼吸系统疾病RR值(95% CI) 循环系统疾病RR值(95% CI) T分级(℃) <12.68 0.994(0.983~1.005) 0.989(0.971~1.007) a 0.988(0.975~1.002) a 12.68~27.30 0.994(0.989~0.999) b 0.989(0.979~0.999) b 0.989(0.982~0.996) b >27.30 1.001(1.004~1.015) b、c 1.020(1.006~1.033) b、c 1.019(1.010~1.028) b、c THI分级 <55 1.008(0.996~1.020) 1.005(0.987~1.024) a 1.007(0.993~1.021) a 55~70 0.984(0.979~0.990) b 0.980(0.969~0.992) b 0.975(0.967~0.982) b >70 1.003(0.999~1.007) c 1.008(0.999~1.018) c 1.007(1.001~1.013) b、c WCI分级 <-300 0.991(0.985~0.998) b 1.004(0.999~1.014) a 0.983(0.975~0.992) a、b -300~-200 0.978(0.972~0.985) b 0.972(0.956~0.988) b 0.969(0.959~0.980) b >-200 1.002(0.998~1.007) c 1.004(0.994~1.014) c 1.008(1.001~1.015) b、c a注:表示偏冷和适宜气象因素层间存在差异;b P<0.05;c表示偏热和适宜气象因素层间存在差异。 表 3 调整空气污染物后交互作用对死亡人数的影响
Table 3. Influence of interaction on death toll after adjusting for air pollutants
气象指标 全因死亡RR值(95% CI) 呼吸系统疾病RR值(95% CI) 循环系统疾病RR值(95% CI) T分级(℃) <12.68 0.987(0.975~0.999) a 0.981(0.961~1.001) 0.980(0.965~0.995) a 12.68~27.30 0.995(0.990~1.000) a 0.993(0.983~1.004) 0.992(0.985~0.999) a >27.30 1.009(1.003~1.015) a 1.016(1.001~1.031) a 1.018(1.007~1.028) a THI分级 <55 1.000(0.987~1.013) 0.991(0.971~1.011) 1.000(0.985~1.016) 55~70 0.984(0.978~0.989) a 0.981(0.968~0.994) a 0.975(0.967~0.986) a >70 1.002(0.999~1.007) 1.009(0.999~1.019) 1.008(1.002~1.015) a WCI分级 <-300 0.988(0.981~0.995) a 0.973(0.960~0.986) a 0.980(0.971~0.989) a -300~-200 0.983(0.975~0.990) a 0.986(0.968~1.004) 0.975(0.964~0.987) a >-200 1.001(0.997~1.005) 1.002(0.992~1.012) 1.006(0.999~1.313) 注:a P<0.05;模型调整的空气污染物,SO2+NO2+PM2.5。 -
[1] Martin SL, Cakmak S, Hebbern CA, et al. Climate change and future temperature-related mortality in 15 Canadian Cities [J]. Int J Biometeorol, 2012, 56(4): 605-619. DOI: 10.1007/s00484-011-0449-y. [2] Iñiguez C, Ballester F, Ferrandiz J, et al. Relation between temperature and mortality in thirteen Spanish Cities [J]. Int J Environ Res Public Health, 2010, 7(8): 3196-3210. DOI: 10.3390/ijerph7083196. [3] 李宁, 田文. 城市大气监测用臭氧前体物混合气体标准样品研究[M]. 北京: 中国环境出版社, 2017: 20-23.Li N, Tian W. Study on the standard sample of mixed gas of ozone precursors for urban atmospheric monitoring [M]. Beijing: China Environment Publishing House, 2017: 20-23. [4] Li K, Jacob DJ, Liao H, et al. A two-pollutant strategy for improving ozone and particulate air quality in China [J]. Nat Geosci, 2019, 12(11): 906-910. DOI: 10.1038/s41561-019-0464-x. [5] Silva RA, West JJ, Lamarque JF, et al. Future global mortality from changes in air pollution attributable to climate change [J]. Nat Clim Chang, 2017, 7(9): 647. DOI: 10.1038/nclimate3354. [6] Chen K, Yang HB, Ma ZW, et al. Influence of temperature to the short-term effects of various ozone metrics on daily mortality in Suzhou, China [J]. Atmos Environ, 2013, 79: 119-128. DOI: 10.1016/j.atmosenv.2013.06.004. [7] 张莹, 辛金元, 马盼, 等. 成都市气温与PM2.5和O3交互作用对疾病死亡人数的影响研究[J]. 中国环境科学, 2021, 41(8): 3887-3895. DOI: 10.19674/j.cnki.issn1000-6923.20210315.001.Zhang Y, Xin JY, Ma P, et al. Interaction effects between ambient temperature and PM2.5 and O3 on mortality in Chengdu [J]. China Environmental Science, 2021, 41(8): 3887-3895. DOI: 10.19674/j.cnki.issn1000-6923.20210315.001. [8] Stringer ET. Climate and man's environment—an introduction to applied climatology [J]. Geograph J, 1980, 146(3): 125. DOI: 10.2307/634095. [9] Yang HC, Chang SH, Lu R, et al. The effect of particulate matter size on cardiovascular health in Taipei basin, Taiwan [J]. Comput Methods Programs Biomed, 2016, 137: 261-268. DOI: 10.1016/j.cmpb.2016.08.014. [10] Cheng J, Zhu R, Xu Z, et al. Temperature variation between neighboring days and mortality: a distributed lag non-linear analysis [J]. Int J Public Health, 2014, 59(6): 923-931. DOI: 10.1007/s00038-014-0611-5. [11] Gao PJ, Wu YS, He LH, et al. Acute effects of ambient nitrogen oxides and interactions with temperature on cardiovascular mortality in Shenzhen, China [J]. Chemosphere, 2022, 287(pt3): 132255. DOI: 10.1016/j.chemosphere.2021.132255. [12] 肖薇薇, 安彬, 王柯欢, 等. 近58年陕西省旅游气候舒适期及其时空变化研究[J]. 河南科学, 2021, 39(8): 1340-1350. DOI: 10.3969/j.issn.1004-3918.2021.08.021.Xiao WW, An B, Wang KH, et al. The tourism climate comfort periods and their spatiotemporal changes in Shaanxi Province from 1960 to 2017 [J]. Henan Science, 2021, 39(8): 1340-1350. DOI: 10.3969/j.issn.1004-3918.2021.08.021. [13] Zeka A, Zanobetti A, Schwartz J. Individual-level modifiers of the effects of particulate matter on daily mortality [J]. Am J Epidemiol, 2006, 163(9): 849-859. DOI: 10.1093/aje/kwj116. [14] Wei Y, Yazdi MD, Di Q, et al. Emulating causal dose-response relations between air pollutants and mortality in the Medicare population [J]. Environ Health, 2021, 20(1): 53. DOI: 10.1186/s12940-021-00742-x. [15] Sicard P, Khaniabadi YO, Perez S, et al. Effect of O3, PM10 and PM2.5 on cardiovascular and respiratory diseases in cities of France, Iran and Italy [J]. Environ Sci Pollut Res, 2019, 26(31): 32645-32665. DOI: 10.1007/s11356-019-06445-8. [16] Raza A, Dahlquist M, Lind T, et al. Susceptibility to short-term ozone exposure and cardiovascular and respiratory mortality by previous hospitalizations [J]. Environ Health, 2018, 17(1): 37. DOI: 10.1186/s12940-018-0384-z. [17] Ma W, Wang LJ, Lin HL, et al. The temperature-mortality relationship in China: an analysis from 66 Chinese communities [J]. Environ Res, 2015, 137: 72-77. DOI: 10.1016/j.envres.2014.11.016. [18] Zeng Q, Li G, Cui Y, et al. Estimating temperature-mortality exposure-response relationships and optimum ambient temperature at the multi-city level of China [J]. Int J Environ Res Public Health, 2016, 13(3): 279. DOI: 10.3390/ijerph13030279. [19] Curriero FC, Heiner KS, Samet JM, et al. Temperature and mortality in 11 cities of the eastern United States [J]. Am J Epidemiol, 2002, 155(1): 80-87. DOI: 10.1093/aje/155.1.80. [20] 张莹, 尚可政, 孙宏, 等. 南京市呼吸系统和循环系统疾病死亡人数与气象因子的关系分析[J]. 兰州大学学报(自然科学版), 2014, 50(1): 59-65. DOI: 10.3969/j.issn.1006-4052.2012.12.025.Zhang Y, Shang KZ, Sun H, et al. Analysis of the relationship between the death toll of respiratory and circulatory diseases and meteorological factors in Nanjing City [J]. J Lanzhou Univ (Nat Sci), 2014, 50(1): 59-65. DOI: 10.3969/j.issn.1006-4052.2012.12.025. [21] Pascal M, Wagner V, Chatignoux E, et al. Ozone and short-term mortality in nine French Cities: influence of temperature and season [J]. Atmos Environ, 2012, 62: 566-572. DOI: 10.1016/j.atmosenv.2012.09.009. [22] Kinney PL. Interactions of climate change, air pollution, and human health [J]. Curr Envir Health Rpt, 2018, 5(1): 179-186. DOI: 10.1007/s40572-018-0188-x. [23] Lou JN, Wu YY, Liu PH, et al. Health effects of climate change through temperature and air pollution [J]. Curr Pollution Rep, 2019, 5(3): 144-158. DOI: 10.1007/s40726-019-00112-9. [24] Zhang J, Chen Q, Wang Q, et al. The acute health effects of ozone and PM2.5 on daily cardiovascular disease mortality: a multi-center time series study in China [J]. Ecotoxicol Environ Saf, 2019, 174: 218-223. DOI: 10.1016/j.ecoenv.2019.02.085. [25] Li M, Dong H, Wang B, et al. Association between ambient ozone pollution and mortality from a spectrum of causes in Guangzhou, China [J]. Sci Total Environ, 2021, 754: 142110. DOI: 10.1016/j.scitotenv.2020.142110. [26] Leiser CL, Smith KR, VanDerslice JA, et al. Evaluation of the sex-and-age-specific effects of PM2.5 on hospital readmission in the presence of the competing risk of mortality in the medicare population of utah 1999-2009 [J]. J Clin Med, 2019, 8(12): 2114. DOI: 10.3390/jcm8122114. [27] 梁亚琼, 洪忻, 徐斐南. 南京市气象因素对居民心血管疾病死亡的影响[J]. 中华疾病控制杂志, 2015, 19(1): 24-27. DOI: 10.16462/j.cnki.zhjbkz.2015.01.001.Liang YQ, Hong X, Xu FN. The influence of meteorological factors on the death of residents from cardiovascular disease in Nanjing City [J]. Chin J Dis Control Prev, 2015, 19(1): 24-27. DOI: 10.16462/j.cnki.zhjbkz.2015.01.001. -