• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境因素对水痘发病影响的研究进展

栾桂杰 张伟燕 刘少楠 陈萌 孙靓

栾桂杰, 张伟燕, 刘少楠, 陈萌, 孙靓. 环境因素对水痘发病影响的研究进展[J]. 中华疾病控制杂志, 2024, 28(1): 101-107. doi: 10.16462/j.cnki.zhjbkz.2024.01.016
引用本文: 栾桂杰, 张伟燕, 刘少楠, 陈萌, 孙靓. 环境因素对水痘发病影响的研究进展[J]. 中华疾病控制杂志, 2024, 28(1): 101-107. doi: 10.16462/j.cnki.zhjbkz.2024.01.016
LUAN Guijie, ZHANG Weiyan, LIU Shaonan, CHEN Meng, SUN Liang. A review on the impact of environmental factors on the incidence of chickenpox[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(1): 101-107. doi: 10.16462/j.cnki.zhjbkz.2024.01.016
Citation: LUAN Guijie, ZHANG Weiyan, LIU Shaonan, CHEN Meng, SUN Liang. A review on the impact of environmental factors on the incidence of chickenpox[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(1): 101-107. doi: 10.16462/j.cnki.zhjbkz.2024.01.016

环境因素对水痘发病影响的研究进展

doi: 10.16462/j.cnki.zhjbkz.2024.01.016
基金项目: 

“齐鲁卫生与健康杰出青年人才”项目 Luwei Talent Word 〔2020〕 No.3

山东省医药卫生科技发展计划项目 202012050267

详细信息
    通讯作者:

    栾桂杰,E-mail: luanguijie@sina.com

  • 中图分类号: R122

A review on the impact of environmental factors on the incidence of chickenpox

Funds: 

"Qilu Health Outstanding Young Talents" Project Luwei Talent Word 〔2020〕 No.3

Shandong Medical and Health Science and Technology Development Plan Project 202012050267

More Information
  • 摘要:   目的  综合分析气象因素和大气污染等环境因素对水痘发病的影响。  方法  在中国知网、万方、Web of Science、PubMed等数据库检索2021年12月31日前发表的环境因素与水痘发病关系的文献,对纳入研究的基本信息、方法和结果等进行整理分析。  结果  共纳入19项气象因素研究和3项大气污染研究。气温、相对湿度和降水的变化会造成水痘发病的增多,大气压、风速、日照等与水痘发病之间的相关性存在地区差异;PM2.5、PM10和NO2等大气污染物会增加水痘发病的风险。  结论  气象因素和大气污染等环境因素暴露会影响水痘的发病,需采取针对性的防护措施。
  • 图  1  文献检索流程

    Figure  1.  Flow diagram of articles included

    表  1  气象因素相关研究的基本特征

    Table  1.   Basic characteristics of included meteorological factors studies

    序号
    No.
    参考文献
    References
    发表年份
    Year of publication
    国家/地区
    Country/Region
    研究方法
    Method
    气象因素
    Meteorological factor
    主要结果(相关性)
    Results (correlation)
    1 Kokaze, 等[6]
    Kokaze, et al[6]
    2001 日本
    Japan
    Spearman相关分析
    Spearman correlation analysis
    气温
    Temperature
    正相关
    Positive correlation
    2 Wu, 等[7]
    Wu, et al[7]
    2007 中国台湾
    Taiwan, China
    广义估计方程
    Generalized estimating equations
    气温
    Temperature
    负相关
    Negative correlation
    3 Chan, 等[8]
    Chan, et al [8]
    2011 中国香港
    Hong Kong, China
    Spearman相关分析
    Spearman correlation analysis
    气温、相对湿度、降水
    Temperature, humidity, rainfall
    相对湿度、降水负相关
    Negative correlation with humidity and rainfall
    4 金飒, 等[9]
    Jin Sa, et al[9]
    2013 中国孝感
    Xiaogan, China
    Spearman相关分析
    Spearman correlation analysis
    气温、相对湿度、降水
    Temperature, humidity, rainfall
    无相关性
    No correlation
    5 韩微笑[10]
    Han Weixiao[10]
    2014 中国广州
    Guangzhou, China
    分布滞后非线性模型
    Distributed lag nonlinear model
    气温
    Temperature
    正相关
    Positive correlation
    6 Chan, 等[11]
    Chan, et al [11]
    2014 中国香港
    Hong Kong, China
    病例交叉研究
    Case-crossover study
    气温、大气压、相对湿度、风速、降水
    Temperature, atmospheric pressure, humidity, wind speed, rainfall
    气温、大气压正相关;相对湿度负相关
    Positive correlation with temperature and atmospheric pressure; Negative correlation with humidity
    7 Hervás, 等[12]
    Hervás, et al[12]
    2014 西班牙马洛卡
    Mallorca, Spain
    Spearman相关分析
    Spearman correlation analysis
    气温、相对湿度、降水、水汽压、大气压、风速、日照
    Temperature, humidity, rainfall, vapor pressure, atmospheric pressure, wind speed, sunshine
    气温、水汽压负相关;风速、日照正相关
    Negative correlation with temperature and vapor pressure; Positive correlation with wind speed and sunshine
    8 魏晓娟, 等[13]
    Wei Xiaojuan,
    et al[13]
    2014 中国临沂
    Linyi, China
    Spearman相关分析
    Spearman correlation analysis
    气温、风速、降水、日照、大气压
    Temperature, wind speed, rainfall, sunshine, atmospheric pressure
    气温、日照正相关;大气压负相关
    Positive correlation with temperature and sunshine; Negative correlation with atmospheric pressure
    9 Yang, 等[14]
    Yang, et al[14]
    2015 中国上海
    Shanghai, China
    广义加性模型
    Generalized additive model
    气温
    Temperature
    负相关
    Negative correlation
    10 Harigane, 等[15]
    Harigane, et al[15]
    2015 日本
    Japan
    Spearman相关分析
    Spearman correlation analysis
    气温、相对湿度、降水
    Temperature, humidity, rainfall
    气温、降水季节相关性
    Seasonal correlation with temperature and rainfall
    11 Yang, 等[16]
    Yang, et al[16]
    2016 中国济南
    Jinan, China
    泊松回归
    Poisson regression
    气温、大气压、相对湿度、风速、降水、日照
    Temperature, atmospheric pressure, humidity, wind speed, rainfall, sunshine
    大气压、日照、降水正相关;气温、相对湿度负相关
    Positive correlation with atmospheric pressure, sunshine and rainfall; Negative correlation with temperature and humidity
    12 Chen, 等[17]
    Chen, et al[17]
    2017 中国武汉、香港
    Wuhan and Hong Kong, China
    时间序列分析
    Time-series analysis
    气温、相对湿度和降水
    Temperature, humidity, rainfall
    气温、降水季节相关性
    Seasonal correlation with temperature and rainfall
    13 王金玉, 等[18]
    Wang Jinyu,
    et al[18]
    2018 中国兰州
    Lanzhou, China
    Spearman相关分析、分布滞后非线性模型
    Spearman correlation analysis, distributed lag nonlinear model
    气温、大气压、风速、相对湿度、降水
    Temperature, atmospheric pressure, wind speed, humidity, rainfall
    气温、风速、降水、相对湿度负相关;大气压正相关
    Negative correlation with temperature, wind speed, rainfall and humidity; Positive correlation with atmospheric pressure
    14 Sumi[19] 2018 丹麦、芬兰
    Denmark, Finland
    时间序列分析
    Time-series analysis
    气温
    Temperature
    季节相关性
    Seasonal correlation
    15 罗玲, 等[20]
    Luo Ling, et al[20]
    2018 中国湖北
    Hubei, China
    Spearman相关分析
    Spearman correlation analysis
    气温、相对湿度、降水、日照
    Temperature, humidity, rainfall, sunshine
    季节相关性
    Seasonal correlation
    16 叶雯婧, 等[21]
    Ye Wenjing,
    et al[21]
    2019 中国福建
    Fujian, China
    广义线性模型
    Generalized linear model
    气温、降水、风速、相对湿度、大气压
    Temperature, rainfall, wind speed, humidity, atmospheric pressure
    气温、相对湿度、风速负相关;降水、大气压正相关
    Negative correlation with temperature, humidity and wind speed; Positive correlation with rainfall and atmospheric pressure
    17 Lu, 等[22]
    Lu, et al [22]
    2020 中国广州
    Guangzhou, China
    分布滞后非线性模型
    Distributed lag nonlinear model
    气温、降水、大气压、风速、相对湿度、日照
    Temperature, rainfall, atmospheric pressure, wind speed, humidity, sunshine
    降水、大气压、日照正相关;风速负相关
    Positive correlation with rainfall, atmospheric pressure and sunshine; Negative correlation with wind speed
    18 俞佳珂, 等[23]
    Yu Jiake, et al[23]
    2021 中国温州
    Wenzhou, China
    线性回归、多元回归
    Linear regression, multiple regression
    气温、相对湿度、降水、风速
    Temperature, humidity, rainfall, wind speed
    降水、风速负相关
    Negative correlation with rainfall and wind speed
    19 邱海岩, 等[24]
    Qiu Haiyan,
    et al[24]
    2021 中国张家港
    Zhangjiagang, China
    Spearman相关分析、多元回归
    Spearman correlation analysi, multiple regression
    气温、大气压、相对湿度、降水、风速、日照
    Temperature, atmospheric pressure, humidity, rainfall, wind speed, sunshine
    季节相关性
    Seasonal correlation
    下载: 导出CSV

    表  2  大气污染相关研究的基本特征

    Table  2.   Basic characteristics of included air pollution studies

    序号
    No.
    参考文献
    References
    发表年份
    Year of publication
    国家/地区
    Country/Region
    研究方法
    Method
    空气污染因素
    Air pollution factor
    主要结果(相关性)
    Result (correlation)
    1 李平, 等[25]
    Li Ping, et al[25]
    2019 中国天津
    Tianjin, China
    Spearman相关分析
    Spearman correlation analysi
    PM2.5、PM10、SO2、NO2、CO PM2.5、PM10、NO2正相关
    Positive correlation with PM2.5、PM10、NO2
    2 Yu, 等[26]
    Yu, et al [26]
    2020 中国上海
    Shanghai, China
    分布滞后非线性模型
    Distributed lag nonlinear model
    PM10、NO2、O3、SO2、CO PM10正相关
    Positive correlation with PM10
    3 Wang, 等[27]
    Wang, et al [27]
    2021 中国青岛
    Qingdao, China
    分布滞后非线性模型
    Distributed lag nonlinear model
    PM10、PM2.5、NO2、SO2、O3 PM2.5正相关、高浓度NO2负相关、低浓度NO2正相关
    Positive correlation with PM2.5, negative correlation with high concentration NO2, positive correlation with low concentration NO2
    下载: 导出CSV
  • [1] 李意兰, 陈纯, 刘艳慧, 等. 广州市2014-2018年学校传染病突发公共卫生事件分析[J]. 中国热带医学, 2020, 20(1): 35-38. DOI: 10.13604/j.cnki.46-1064/r.2020.01.08.

    Li YL, Chen C, Liu YH, et al. Public health emergencies of infectious events in schools in Guangzhou, 2014-2018[J]. China Trop Med, 2020, 20(1): 35-38. DOI: 10.13604/j.cnki.46-1064/r.2020.01.08.
    [2] 鲍武波, 党露希, 祝明清, 等. 2011-2018年武汉市某区水痘流行特征分析[J]. 公共卫生与预防医学, 2019, 30(6): 67-70. DOI: 10.3969/j.issn.1006-2483.2019.06.017.

    Bao WB, Dang LX, Zhu MQ, et al. Epidemiological characteristics of varicella in a district of Wuhan, 2011-2018[J]. J Public Health Prev Med, 2019, 30(6): 67-70. DOI: 10.3969/j.issn.1006-2483.2019.06.017.
    [3] 董蒲梅, 王淼, 刘燕敏. 2016-2019年中国水痘流行病学特征[J]. 中国疫苗和免疫, 2020, 26(4): 403-406. DOI: 10.19914/j.cjvi.2020.04.011.

    Dong PM, Wang M, Liu YM. Epidemiological characteristics of varicella in China from 2016 to 2019[J]. Chin J Vaccines and Immun, 2020, 26(4): 403-406. DOI: 10.19914/j.cjvi.2020.04.011.
    [4] 随海田, 李锦成, 王淼, 等. 2005-2015年中国水痘流行病学特征[J]. 中国疫苗和免疫, 2019, 25(2): 155-159. DOI: 10.19914/j.cjvi.2019.02.009.

    Sui HT, Li JC, Wang M, et al. Varicella epidemiology in China, 2005-2015[J]. Chin J Vaccines and Immun, 2019, 25(2): 155-159. DOI: 10.19914/j.cjvi.2019.02.009.
    [5] 武晶晶, 张先慧, 刘晓雪, 等. 2008-2017年济南市水痘流行病学特征分析[J]. 现代预防医学, 2018, 45(19): 3488-3491, 3495.

    Wu JJ, Zhang XH, Liu XX, et al. Epidemiological characteristics of Varicella in Jinan, 2008-2017[J]. Modern Preventive Medicine, 2018, 45(19): 3488-3491, 3495.
    [6] Kokaze A, Yoshida M, Sekine Y, et al. The magnitude of variation in temperature within a year has an effect on the seasonal variations of chickenpox incidence in Japan[J]. Epidemiol Infect, 2001, 126(2): 269-277. DOI: 10.1017/s0950268801005246.
    [7] Wu PY, Li YC, Wu HD. Risk factors for chickenpox incidence in Taiwan from a large-scale computerized database[J]. Int J Dermatol, 2007, 46(4): 362-366. DOI: 10.1111/j.1365-4632.2006.03050.x.
    [8] Chan JY, Tian L, Tian L, et al. Hospitalizations for varicella in children and adolescents in a referral hospital in Hong Kong, 2004 to 2008: a time series study[J]. BMC Public Health, 2011, 11: 366. DOI: 10.1186/1471-2458-11-366.
    [9] 金飒, 孙国运, 邱明, 等. 湖北省孝感市2009-2012年水痘发病与环境因素的相关性分析[J]. 皮肤性病诊疗学杂志, 2013, 20(4): 288-290. DOI: 10.3969/j.issn.1674-8468.2013.04.023.

    Jin S, Sun GY, Qiu M, et al. The epidemiology of varicella and its correlation with environmental factors in Xiaogan City during 2009-2012[J]. J Diagn Ther J Dermatol-Venereol, 2013, 20(4): 288-290. DOI: 10.3969/j.issn.1674-8468.2013.04.023.
    [10] 韩微笑. 2009~2013年广州市气温对常见传染病的短期影响: 基于分布滞后非线性模型的研究[D]. 济南: 山东大学, 2017.

    Han WX. Short-term Impacts of Temperature on Major Infectious Disease in Guangzhou City, 2009-2013-a study based on distributed lag nonlinear models[D]. Jinan: Shandong University, 2017.
    [11] Chan JY, Lin HL, Tian LW. Meteorological factors and El Nino Southern Oscillation are associated with paediatric varicella infections in Hong Kong, 2004-2010[J]. Epidemiol Infect, 2014, 142(7): 1384-1392. DOI: 10.1017/S0950268813002306.
    [12] Hervás D, Hervás-Masip J, Nicolau A, et al. Solar radiation and water vapor pressure to forecast chickenpox epidemics[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(3): 439-446. DOI: 10.1007/s10096-014-2243-3.
    [13] 魏晓娟, 张晓丽. 临沂市重点传染病与气候的相关性研究及预测模型分析[J]. 社区医学杂志, 2014, 12(16): 24-27.

    Wei XJ, Zhang XL. Correlation study and prediction model analysis of key infectious diseases and climate in Linyi City[J]. J Communtity Med, 2014, 12(16): 24-27.
    [14] Yang YY, Chen RJ, Xu JH, et al. The effects of ambient temperature on outpatient visits for varicella and Herpes zoster in Shanghai, China: a time-series study[J]. J Am Acad Dermatol, 2015, 73(4): 660-665. DOI: 10.1016/j.jaad.2015.07.015.
    [15] Harigane K, Sumi A, Mise K, et al. The role of temperature in reported chickenpox cases from 2000 to 2011 in Japan[J]. Epidemiol Infect, 2015, 143(12): 2666-2678. DOI: 10.1017/S095026881400363X.
    [16] Yang YQ, Geng XY, Liu XX, et al. Association between the incidence of varicella and meteorological conditions in Jinan, Eastern China, 2012-2014[J]. BMC Infect Dis, 2016, 16: 179. DOI: 10.1186/s12879-016-1507-1.
    [17] Chen BN, Sumi A, Wang L, et al. Role of meteorological conditions in reported chickenpox cases in Wuhan and Hong Kong, China[J]. BMC Infect Dis, 2017, 17(1): 538. DOI: 10.1186/s12879-017-2640-1.
    [18] 王金玉, 李盛, 马汉平, 等. 2008-2016年兰州市日均气温与水痘发病的关联陛研究[J]. 中华预防医学杂志, 2018, 52(8): 842-848. DOI: 10.3760/cma.j.issn.0253-9624.2018.08.013.

    Wang JY, Li S, Ma HP, et al. Research on the relationship between the daily mean temperature and the daily cases of varicella during 2008-2016 in Lanzhou, China[J]. Chin J Prev Med, 2018, 52(8): 842-848. DOI: 10.3760/cma.j.issn.0253-9624.2018.08.013.
    [19] Sumi A. Role of temperature in reported chickenpox cases in northern European countries: Denmark and Finland[J]. BMC Res Notes, 2018, 11(1): 377. DOI: 10.1186/s13104-018-3497-0.
    [20] 罗玲, 黎明. 湖北省水痘发病情况与气象因素的关系研究[J]. 中国全科医学, 2018, 21(9): 1114-1117. DOI: 10.3969/j.issn.1007-9572.2018.00.062.

    Luo L, Li M. Association between incidence of chickenpox and meteorological factors in Hubei Province, China[J]. Chin Gen Prac, 2018, 21(9): 1114-1117. DOI: 10.3969/j.issn.1007-9572.2018.00.062.
    [21] 叶雯婧, 陈彩粼, 杨林, 等. 福建省2006-2015年度呼吸道传染病与气候因素关联分析[J]. 医学理论与实践, 2019, 32(7): 959-962. DOI: 10.19381/j.issn.1001-7585.2019.07.009.

    Ye WJ, Chen CL, Yang L, et al. Analysis of the association between intestinal infectious diseases and climate factors of Fujian Province in 2006-2015[J]. J Med Theory Pract, 2019, 32(7): 959-962. DOI: 10.19381/j.issn.1001-7585.2019.07.009.
    [22] Lu JY, Zhang ZB, He Q, et al. Association between climatic factors and varicella incidence in Guangzhou, Southern China, 2006-2018[J]. Sci Total Environ, 2020, 728: 138777. DOI: 10.1016/j.scitotenv.2020.138777.
    [23] 俞佳珂, 陈小春, 钟佩佩, 等. 温州市儿童水痘流行特征与气象因素的相关性研究[J]. 国际流行病学传染病学杂志, 2021, 48(1): 38-42. DOI: 10.3760/cma.j.cn331340-20200630-00213.

    Yu JK, Chen XC, Zhong PP, et al. Relationship between epidemiological characteristics of pediatric varicella and meteorology in Wenzhou[J]. Inter J Epidemiol Infect Dis, 2021, 48(1): 38-42. DOI: 10.3760/cma.j.cn331340-20200630-00213.
    [24] 邱海岩, 沈艳, 邵海枫, 等. 张家港市水痘发病与季节气象因素相关性分析[J]. 医学动物防制, 2021, 37(5): 442-445. DOI: 10.7629/yxdwfz202105009.

    Qiu HY, Shen Y, Shao HF, et al. Correlation analysis on seasonal and meteorological factors and chickenpox incidence grouped by seasons in Zhangjiagang[J]. J Med Pest Control, 2021, 37(5): 442-445. DOI: 10.7629/yxdwfz202105009.
    [25] 李平, 孙梅青, 李彭辉, 等. 天津市武清区环境空气PM2.5与急性呼吸道感染性疾病的关联研究[J]. 实用预防医学, 2019, 26(7): 775-780. DOI: 10.3969/j.issn.1006-3110.2019.07.003.

    Li P, Sun MQ, Li PH, et al. Association between ambient air PM2.5 and acute respiratory tract infectious disease in Wuqing District, Tianjin[J]. Pract Prev Med, 2019, 26(7): 775-780. DOI: 10.3969/j.issn.1006-3110.2019.07.003.
    [26] Yu HJ, Wang YJ, Peng Q, et al. Influence of coarse particulate matter on chickenpox in Jiading District, Shanghai, 2009-2018: a distributed lag non-linear time series analysis[J]. Environ Res, 2020, 190: 110039. DOI: 10.1016/j.envres.2020.110039.
    [27] Wang Z, Li X, Hu P, et al. Influence of air pollutants on varicella among adults[J]. Sci Rep, 2021, 11(1): 21020. DOI: 10.1038/s41598-021-00507-z.
    [28] Hao JY, Yang ZY, Huang SQ, et al. Association between short-term exposure to ambient air pollution and the incidence of mumps in Wuhan, China: a time-series study[J]. Environ Res, 2019, 177: 108660. DOI: 10.1016/j.envres.2019.108660.
    [29] Zhang M, Zhu Y. Association between particulate matter pollution and the incidence of mumps in 31 provinces from China[J]. Environ Sci Pollut Res Int, 2021, 28(37): 51210-51216. DOI: 10.1007/s11356-021-14287-6.
    [30] Gu SN, Li DC, Lu BB, et al. Associations between ambient air pollution and daily incidence of pediatric hand, foot and mouth disease in Ningbo, 2014-2016: a distributed lag nonlinear model[J]. Epidemiol Infect, 2020, 148: e46. DOI: 10.1017/S0950268820000321.
    [31] Ji XY, Huang LY, Song J, et al. Short-term effects of meteorological factors, air pollution, and sunspot on childhood hand, foot, and mouth disease in Tianjin, China: a new time series regression, 2014-2018[J]. Environ Sci Pollut Res Int, 2020, 27(29): 37022-37035. DOI: 10.1007/s11356-020-09794-x.
    [32] Copat C, Cristaldi A, Fiore M, et al. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: a systematic review[J]. Environ Res, 2020, 191: 110129. DOI: 10.1016/j.envres.2020.110129.
    [33] Jones RM, Brosseau LM. Aerosol transmission of infectious disease[J]. J Occup Environ Med, 2015, 57(5): 501-508. DOI: 10.1097/jom.0000000000000448.
    [34] Jayaweera M, Perera H, Gunawardana B, et al. Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy[J]. Environ Res, 2020, 188: 109819. DOI: 10.1016/j.envres.2020.109819.
    [35] Huang CH, Lin HC, Tsai CD, et al. The interaction effects of meteorological factors and air pollution on the development of acute coronary syndrome[J]. Sci Rep, 2017, 7: 44004. DOI: 10.1038/srep44004.
    [36] Niu ZC, Qi YJ, Zhao PQ, et al. Short-term effects of ambient air pollution and meteorological factors on tuberculosis in semi-arid area, northwest China: a case study in Lanzhou[J]. Environ Sci Pollut Res Int, 2021, 28(48): 69190-69199. DOI: 10.1007/s11356-021-15445-6.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  570
  • HTML全文浏览量:  270
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 修回日期:  2022-06-04
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2024-01-10

目录

    /

    返回文章
    返回