• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苏州市大气污染物暴露与肺结节进展风险的队列研究

张心悦 陈劼 石逸秋 刘博 徐瑞宁 刘可夫 王莉娜

张心悦, 陈劼, 石逸秋, 刘博, 徐瑞宁, 刘可夫, 王莉娜. 苏州市大气污染物暴露与肺结节进展风险的队列研究[J]. 中华疾病控制杂志, 2024, 28(2): 125-130. doi: 10.16462/j.cnki.zhjbkz.2024.02.001
引用本文: 张心悦, 陈劼, 石逸秋, 刘博, 徐瑞宁, 刘可夫, 王莉娜. 苏州市大气污染物暴露与肺结节进展风险的队列研究[J]. 中华疾病控制杂志, 2024, 28(2): 125-130. doi: 10.16462/j.cnki.zhjbkz.2024.02.001
ZHANG Xinyue, CHEN Jie, SHI Yiqiu, LIU Bo, XU Ruining, LIU Kefu, WANG Lina. A cohort study of air pollutant exposure with the risk of pulmonary nodules progression in Suzhou City[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(2): 125-130. doi: 10.16462/j.cnki.zhjbkz.2024.02.001
Citation: ZHANG Xinyue, CHEN Jie, SHI Yiqiu, LIU Bo, XU Ruining, LIU Kefu, WANG Lina. A cohort study of air pollutant exposure with the risk of pulmonary nodules progression in Suzhou City[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(2): 125-130. doi: 10.16462/j.cnki.zhjbkz.2024.02.001

苏州市大气污染物暴露与肺结节进展风险的队列研究

doi: 10.16462/j.cnki.zhjbkz.2024.02.001
基金项目: 

南京医科大学姑苏学院科研项目 GSKY20210209

江苏省研究生科研与实践创新计划项目 SJCX23_0095

详细信息
    通讯作者:

    王莉娜,E-mail:lnwang@seu.edu.cn

  • 中图分类号: R181.2; R122.7

A cohort study of air pollutant exposure with the risk of pulmonary nodules progression in Suzhou City

Funds: 

Scientific Research Project of Gusu School in Nanjing Medical University GSKY20210209

Postgraduate Research and Practice Innovation Program of Jiangsu Province SJCX23_0095

More Information
  • 摘要:   目的  探究常见大气污染物暴露对肺结节进展风险的影响。  方法  基于苏州市立医院体检肺结节阳性人群构建队列,采用环境监测站点空气污染物数据计算个体基线前一年大气污染物平均日暴露浓度。随访肺结节患者结节进展,根据Fleischner协会提出的肺结节管理指南判断结局。采用Log-rank检验比较肺结节进展率,通过Cox比例风险回归模型估计肺结节进展风险。  结果  共纳入785例肺结节阳性个体,在中位随访23.50个月中有354例出现肺结节进展。较高浓度的SO2、NO2、PM2.5和PM10暴露组人群发生肺结节进展时间相比较低浓度组更短。多因素校正后,PM2.5(HR=1.48, 95% CI : 1.06~2.06,P<0.01)和PM10(HR=1.56, 95% CI : 1.08~2.25,P=0.02)暴露浓度最高组(Q4)肺结节进展风险高于最低组(Q1),并且肺结节进展风险与PM10暴露浓度呈正向剂量-反应关系。  结论  高浓度大气污染物暴露下肺结节进展速度较快且风险增加,有必要加强对高浓度大气污染物暴露下的肺结节患者的随访和管理工作。
  • 图  1  可吸入颗粒物暴露与肺结节进展的剂量反应关系

    Figure  1.  Dose-response relationship between respirable particulate matter exposure and progression of lung nodules

    图  2  大气污染物暴露对不同亚组人群肺结节进展的影响

    Figure  2.  Effect of air pollutant exposure on the progression of pulmonary nodules in different subpopulations

    表  1  研究对象基线特征

    Table  1.   Baseline characteristics of the study population

    特征
    Characteristics
    肺结节进展
    Progression of lung nodules
    合计
    Total
    (n=785)
    W
    value
    P
    value
    无  No
    (n=431)
    有  Yes
    (n=354)
    性别  Gender NA 0.61
        男性  Male 262(60.79) 208(58.76) 470(59.87)
        女性 Female 169(39.21) 146(41.24) 315(40.13)
    随访时间/月  Follow-up time/months 17.22±8.15 15.89±6.41 16.62±7.44 74 488 0.64
    年龄/岁  Age/years 47.05±12.78 50.38±11.89 48.55±12.49 64 138 < 0.01
    体质指数/(kg·m-2)  Body mass index/(kg·m-2) 24.36±3.60 24.58±6.50 24.46±5.12 58 605 0.95
    高血压   Hypertension NA 0.01
        是  Yes 89(20.65) 102(28.81) 191(24.33)
        否  No 320(74.25) 232(65.54) 552(70.32)
    糖尿病   Diabetes NA 0.30
        是  Yes 23(5.35) 26(7.35) 49(6.25)
        否  No 380(88.17) 303(85.59) 683(87.01)
    其他肺部疾病   Other lung diseases NA 0.83
        是  Yes 54(14.88) 45(15.52) 99(15.16)
        否  No 293(67.98) 234(66.10) 527(67.13)
    吸烟   Smoking NA 0.94
        是  Yes 131(30.75) 109(31.05) 240(30.89)
        否  No 295(68.45) 241(68.08) 536(68.28)
    饮酒   Alcohol intake NA 1.00
        是  Yes 37(8.69) 30(8.57) 67(8.63)
        否  No 390(90.49) 317(89.55) 707(90.06)
    工作环境   Working environment NA 0.13
        室内  Interior 257(76.04) 198(81.48) 455(78.31)
        室外  Outdoor 81(18.79) 45(12.71) 126(16.05)
    SO2/(μg·m-3) 5.37±1.20 6.09±1.31 5.69±1.32 51 601 < 0.01
    NO2/(μg·m-3) 38.23±3.50 41.11±3.42 39.53±3.75 41 085 < 0.01
    O3/(μg·m-3) 116.53±6.52 113.51±6.49 115.16±6.67 93 023 < 0.01
    CO/(mg·m-3) 0.66±0.09 0.62±0.09 0.64±0.09 91 193 < 0.01
    PM10/(μg·m-3) 53.52±4.21 56.60±4.53 54.91±4.62 43 244 < 0.01
    PM2.5/(μg·m-3) 35.30±3.40 37.85±3.11 36.45±3.51 42 711 < 0.01
    注:NA,缺乏有效值。
    ①以人数(占比/%)或x±s表示;②表示该变量有缺失值;③连续型变量采用Wilcoxon检验(W值),分类变量采用Fisher′s精确概率法检验。
    Note:NA, not available.
    ① Number of people (proportion/%) or x±s; ② Indicates that the variable has missing values; ③ The Wilcoxon test (W-value) was used for continuous variables and the Fisher′s test for categorical variables.
    下载: 导出CSV

    表  2  不同室外大气污染物年平均日暴露水平中位进展时间及进展率比较

    Table  2.   Comparison of median progression times and progression rates for different outdoor air pollutant annual mean daily exposure levels

    大气污染物
    Air pollutants
    中位进展时间/月(95% CI)
    Median time to progress/months (95% CI)
    Q1~Q4生存率检验
    Test for difference in survival rates from Q1 to Q4
    Q1 Q2 Q3 Q4 差异检验P
    Test of difference P value
    趋势检验P
    Trend test P value
    SO2 24.02(23.56~NA) 24.02(23.13~28.06) 14.03(13.83~20.27) 14.16(13.80~23.89) 0.48 0.20
    NO2 24.15(23.56~NA) 24.38(23.56~NA) 15.74(13.83~24.12) 14.16(13.83~23.13) 0.11 0.02
    CO 15.74(13.83~24.11) 23.46(14.59~24.38) 20.11(13.83~23.72) 24.77(23.56~NA) 0.25 0.43
    O3 17.35(13.90~24.21) 23.52(13.90~25.13) 23.56(22.90~24.74) 23.56(21.10~24.38) 0.89 0.47
    PM2.5 24.77(23.56~NA) 24.38(23.56~NA) 14.46(13.83~24.28) 14.03(13.83~21.39) 0.05 0.01
    PM10 24.77(24.02~NA) 23.56(23.52~25.89) 16.10(13.90~23.89) 14.19(13.83~23.72) 0.03 0.05
    注:NA,缺乏有效值。
    Note:NA, not available.
    下载: 导出CSV

    表  3  大气污染物暴露水平与肺结节进展风险关联

    Table  3.   Association between air pollutants exposure levels and risk of lung nodule progression

    变量
    Variable
    模型
    Model
    HR值  value (95% CI) 污染物浓度每增加10 /(μg·m-3)
    For each 10 increase in pollutant concentration /(μg·m-3)
    HR值  value (95% CI)
    Q1 Q2 Q3 Q4
    SO2 模型1  Model1 1.00 0.96(0.67~1.36) 1.14(0.84~1.55) 1.14(0.85~1.54) 1.50(0.66~3.39)
    模型2  Model2 1.00 1.04(0.73~1.48) 1.14(0.84~1.56) 1.21(0.89~1.63) 1.40(0.62~3.16)
    模型3  Model3 1.00 1.05(0.74~1.50) 1.14(0.83~1.56) 1.22(0.90~1.65) 1.40(0.61~3.23)
    NO2 模型1  Model1 1.00 1.37(0.92~2.03) 1.45(1.00~2.10) 1.58(1.10~2.27) 1.37(1.01~1.86)
    模型2  Model2 1.00 1.22(0.82~1.82) 1.43(0.99~2.06) 1.43(0.99~2.05) 1.29(0.95~1.75)
    模型3  Model3 1.00 1.21(0.81~1.81) 1.42(0.98~2.05) 1.42(0.99~2.05) 1.29(0.95~1.76)
    CO 模型1  Model1 1.00 0.85(0.63~1.17) 1.05(0.81~1.37) 0.79(0.57~1.09) 0.10(0.98~1.01)
    模型2 Model2 1.00 0.82(0.61~1.10) 0.96(0.74~1.26) 0.78(0.56~1.08) 0.99(0.98~1.00)
    模型3  Model3 1.00 0.81(0.60~1.09) 0.95(0.72~1.24) 0.78(0.56~1.08) 0.99(0.98~1.00)
    O3 模型1  Model1 1.00 1.06(0.79~1.41) 1.11(0.84~1.47) 1.10(0.82~1.49) 1.03(0.88~1.21)
    模型2  Model2 1.00 1.09(0.82~1.45) 1.12(0.85~1.49) 1.14(1.84~1.53) 1.05(0.89~1.24)
    模型3  Model3 1.00 1.09(0.82~1.46) 1.13(0.85~1.51) 1.14(0.84~1.54) 1.05(0.89~1.24)
    PM2.5 模型1  Model1 1.00 1.05(0.72~1.53) 1.09(0.78~1.52) 1.40(1.01~1.94) 1.52(1.07~2.16)
    模型2  Model2 1.00 1.09(0.74~1.60) 1.19(0.85~1.67) 1.46(1.05~2.03) 1.55(1.10~2.20)
    模型3  Model3 1.00 1.09(0.74~1.60) 1.18(0.84~1.66) 1.48(1.06~2.06) 1.56(1.09~2.22)
    PM10 模型1  Model1 1.00 1.79(1.22~2.64) 1.63(1.13~2.35) 1.66(1.15~2.39) 1.35(1.07~1.69)
    模型2  Model2 1.00 1.46(0.98~2.17) 1.47(1.02~2.12) 1.58(1.10~2.27) 1.38(1.10~1.73)
    模型3  Model3 1.00 1.44(0.97~2.14) 1.48(1.03~2.14) 1.56(1.08~2.25) 1.38(1.09~1.74)
    注:①模型1,未调整混杂因素;模型2,调整性别+年龄+体质指数(body mass index,BMI);模型3,调整性别+年龄+BMI+吸烟+学历+工作环境+高血压+糖尿病+其他肺部疾病;②根据人群年均大气污染物日暴露浓度分布的四分位数由低到高,将参与者分为Q1~Q4共4组;③对照组。
    Note: ① Models, unadjusted for confounders; Model 2, adjusted for sex+age+body mass index (BMI); Model 3, adjusted for sex+age+BMI+smoking+education+work environment+hypertension+diabetes+other lung diseases; ② Participants were divided into four groups from Q1 to Q4 according to the lowest to highest quartile of the distribution of annual mean daily exposure concentrations of air pollutants in the population; ③ Control group.
    下载: 导出CSV
  • [1] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
    [2] 赵宝连, 萧毅. 肺结节生长预测的研究现状及展望[J]. 肿瘤影像学, 2022, 31(4): 345-349. DOI: 10.19732/j.cnki.2096-6210.2022.04.001.

    Zhao BL, Xiao Y. Progress in the prediction of lung nodule growth [J]. Oncoradiology, 2022, 31(4): 345-349. DOI: 10.19732/j.cnki.2096-6210.2022.04.001.
    [3] Gawełko J, Cierpiał-Wolan M, Bwanakare S, et al. Association between air pollution and squamous cell lung cancer in south-eastern Poland [J]. Int J Environ Res Public Health, 2022, 19(18): 11598. DOI: 10.3390/ijerph191811598.
    [4] 中华医学会呼吸病学分会肺癌学组, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018年版) [J]. 中华结核和呼吸杂志, 2018, 41(10): 763-771. DOI: 10.3760/cma.j.issn.1001-0939.2018.10.004.

    Lung Cancer Group of the Respiratory Disease Branch of the Chinese Medical Association, the Expert Group of the Chinese Lung Cancer Prevention and Control Alliance. Chinese expert consensus on diagnosis and treatment of lung nodules (2018) [J]. Chin J Tuberc Respir Dis, 2018, 41(10): 763-771. DOI: 10.3760/cma.j.issn.1001-0939.2018.10.004.
    [5] Pan XF, Wang L, Pan A. Epidemiology and determinants of obesity in China [J]. Lancet Diabetes Endocrinol, 2021, 9(6): 373-392. DOI: 10.1016/S2213-8587(21)00045-0.
    [6] Bankier AA, MacMahon H, Goo JM, et al. Recommendations for measuring pulmonary nodules at CT: a statement from the Fleischner society [J]. Radiology, 2017, 285(2): 584-600. DOI: 10.1148/radiol.2017162894.
    [7] He YT, Zhang YC, Shi GF, et al. Risk factors for pulmonary nodules in north China: a prospective cohort study [J]. Lung Cancer, 2018, 120: 122-129. DOI: 10.1016/j.lungcan.2018.03.021.
    [8] Wang GZ, Cheng X, Zhou B, et al. The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution [J]. Elife, 2015, 4: e09419. DOI: 10.7554/eLife.09419.
    [9] Wang N, Mengersen K, Tong SL, et al. Short-term association between ambient air pollution and lung cancer mortality [J]. Environ Res, 2019, 179(Pt A): 108748. DOI: 10.1007/s10653-021-01072-0.
    [10] Liu Y, Tian ZH, He XH, et al. Short-term effects of indoor and outdoor air pollution on the lung cancer morbidity in Henan Province, Central China [J]. Environ Geochem Health, 2022, 44(8): 2711-2731. DOI: 10.1007/s10653-021-01072-0.
    [11] Heraganahally SS, Howarth T, Sorger L, et al. Sex differences in pulmonary function parameters among indigenous Australians with and without chronic airway disease [J]. PLoS One, 2022, 17(2): e0263744. DOI: 10.1371/journal.pone.0263744.
    [12] Satia I, Priel E, Al-Khazraji BK, et al. Exercise-induced bronchoconstriction and bronchodilation: investigating the effects of age, sex, airflow limitation and FEV1 [J]. Eur Respir J, 2021, 58(2): 2004026. DOI: 10.1183/13993003.04026-2020.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  17
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-24
  • 修回日期:  2023-10-27
  • 网络出版日期:  2024-03-30
  • 刊出日期:  2024-02-10

目录

    /

    返回文章
    返回