Association between prenatal exposure to multiple environmental chemicals and birth weight
-
摘要:
目的 探究孕妇妊娠期暴露于金属类、酚类、邻苯二甲酸酯类、对羟基苯甲酸酯类、苯并三唑类和苯并噻唑类组成的化学暴露组与出生体重之间的关联。 方法 选取2014―2015年加入武汉一项出生队列的829对母婴作为研究对象。在妊娠期指导孕妇填写基线调查表, 重复收集孕妇尿液样本, 通过检测尿样中33种金属类、8种酚类、8种邻苯二甲酸酯类、3种对羟基苯甲酸酯类、4种苯并三唑类和4种苯并噻唑(benzothiazole, BTH)类污染物的浓度, 来评估暴露水平。采用全暴露组关联分析(exposome-wide association study, ExWAS)独立检验每种暴露与出生体重的关联。随后采用弹性网络(elastic net, ENET)模型对ExWAS中的阳性变量进行筛选, 并将其纳入贝叶斯核机回归(Bayesian kernel machine regression, BKMR)模型, 以评估混合暴露的影响。 结果 ExWAS结果显示, 双酚S(bisphenol S, BPS)、双酚F(bisphenol F, BPF)、铝(aluminum, Al)、镓(gallium, Ga)和BTH均与出生体重呈负相关, 其浓度升高1个四分位数间距(interquartile range, IQR), 出生体重的差异分别为-36.76(95% CI:-66.79~-6.73)g、-36.05(95% CI:-67.59~-4.51)g、-26.59(95% CI:-52.81~-0.37)g、-37.82(95% CI:-68.60~-7.04)g和-47.89(95% CI:-85.81~-9.96)g。ENET模型筛选得到BPS、Ga和BTH, BKMR模型发现这3种物质的混合暴露物与出生体重降低有关, 与处于P50相比, 混合物浓度上升至P75, 出生体重降低47.45(95% CI:19.21~75.69)g。性别分层分析显示, BPS、Ga和BTH仅对男婴的出生体重有影响。 结论 母亲妊娠期BPS、Ga和BTH暴露与婴儿出生体重的降低有关, 尤其是男婴的体重降低情况。 Abstract:Objective To investigate the association between maternal prenatal exposure to a chemical exposome consisting of metals, phenols, phthalates, hydroxybenzoates, benzotriazoles and benzothiazoles, and the birth weight of newborns. Methods A total of 829 mother-infant pairs who joined a birth cohort in Wuhan from 2014 to 2015 were selected as the study population. Pregnant women were guided to fill out baseline questionnaires, and their urine samples were collected repeatedly. The concentrations of 33 metals, 8 phenols, 8 phthalates, 3 hydroxybenzoates, 4 benzotriazoles, and 4 benzothiazoles metabolites in urine samples were measured. An exposome-wide association study (ExWAS) was applied to test the association of each exposure with birth weight. Subsequently, the elastic net (ENET) model was used to select significant variables from the ExWAS approach, and the selected variables were incorporated into the Bayesian kernel machine regression (BKMR) model to evaluate the effect of their mixture. Results The ExWAS results showed a negative correlation between bisphenol S (BPS), bisphenol F (BPF), aluminum (Al), gallium (Ga), and benzothiazole (BTH) with birth weight, and for each interquartile range (IQR) increase in the concentrations of these exposures, the differences in birth weight were -36.76 (95% CI: -66.79--6.73) g, -36.05 (95% CI: -67.59--4.51) g, -26.59 (95% CI: -52.81--0.37) g, -37.82 (95% CI: -68.60--7.04) g, and -47.89 (95% CI: -85.81--9.96) g, respectively. Besides, BPS, Ga, and BTH were selected by ENET model, then their mixture was significantly associated with reduced birth weight in BKMR model. Compared to the 50th percentile, increasing the concentration of the mixture to the 75th percentile resulted in a reduction in birth weight of 47.45 (95% CI: 19.21-75.69) g. Sex-stratified analysis revealed that BPS, Ga, and BTH only affected the birth weight of male infants. Conclusions Maternal exposure to BPS, Ga, and BTH during pregnancy is associated with a decrease in infant birth weight, particularly in male infants. -
表 1 本研究检测的化合物
Table 1. Chinese and English name and LOD of chemicals detected in the study
中文名称 英文名称 缩写 检出限/(μg·L-1) 中文名称 英文名称 缩写 检出限/(μg·L-1) 邻苯二甲酸乙酯 Mono-ethyl phthalate MEP 0.10 硒 Selenium Se 0.22 邻苯二甲酸单-2- 乙基-5-羧基戊酯 Mono-(2-ethyl-5- carboxypentyl) phthalate MECPP 0.01 铷 Rubidium Rb 0.01 邻苯二甲酸单-2- 乙基-5-羟基己酯 Mono-(2-ethyl-5- hydroxyhexyl) phthalate MEHHP 0.05 锶 Strontium Sr 0.01 邻苯二甲酸单-2- 乙基-5-氧代己酯 Mono-(2-ethyl-5- oxohexyl) phthalate MEOHP 0.05 银 Silver Ag 0.02 邻苯二甲酸单异丁酯 Mono-iso-butyl phthalate MiBP 0.10 镉 Cadmium Cd < 0.01 邻苯二甲酸单正丁酯 Mono-n-butyl phthalate MnBP 0.10 铯 Cesium Cs < 0.01 邻苯二甲酸单苄酯 Mono-benzyl phthalate MBzP 0.10 钡 Barium Ba 0.31 邻苯二甲酸单-2- 乙基己酯 Mono-(2- ethylhexyl) phthalate MEHP 0.10 镧 Lanthanum La < 0.01 对羟基苯甲酸甲酯 Methyl paraben MeP 0.05 铈 Cerium Ce < 0.01 对羟基苯甲酸乙酯 Ethyl paraben EtP 0.01 镨 Praseodymium Pr < 0.01 对羟基苯甲酸丙酯 Propyl paraben PrP 0.05 钕 Neodymium Nd < 0.01 4羟基苯甲酮 4-hydroxy-benzophenone 4-OH-BP 0.10 铕 Europium Eu < 0.01 双酚S Bisphenol S BPS 0.20 钆 Gadolinium Gd < 0.01 双酚A Bisphenol A BPA 0.20 镝 Dysprosium Dy < 0.01 二苯甲酮-1 Benzophenone-1 BP1 0.10 钬 Holmium Ho < 0.01 双酚AF Bisphenol AF BPAF 0.10 铒 Erbium Er < 0.01 二苯甲酮-3 Benzophenone-3 BP3 0.20 铥 Thulium Tm < 0.01 三氯生 Triclosan TCS 0.10 镱 Ytterbium Yb < 0.01 双酚F Bisphenol F BPF 0.10 铊 Thallium Tl 0.02 铝 Aluminum Al 0.11 铅 Lead Pb 0.01 钒 Vanadium V < 0.01 钍 Thorium Th < 0.01 铬 Chromium Cr 0.01 铀 Uranium U < 0.01 锰 Manganese Mn 0.05 1-H-苯并三唑 1-H-benzotriazol 1-H-BTR 0.01 铁 Iron Fe 1.07 1-羟基苯并三唑 1-hydroxy-benzotriazole 1-OH-BTR 0.04 钴 Cobalt Co 0.01 5, 6-二甲基-1-H-苯并三唑 5, 6-dimethyl-1-H-benzotriazole XTR 0.01 镍 Nickel Ni 0.02 甲基苯并三唑 Tolyltriazole TTR 0.02 铜 Copper Cu 0.13 苯并噻唑 Benzothiazole BTH 0.02 锌 Zinc Zn 0.02 2-羟基苯并噻唑 2-hydroxy-benzothiazole 2-OH-BTH 0.01 镓 Gallium Ga 0.02 2-甲硫基苯并噻唑 2-methylthio-benzothiazole 2-MeS-BTH 0.02 砷 Arsenic As 0.02 2-氨基苯并噻唑 2-amino-benzothiazole 2-amino-BTH 0.01 表 2 研究对象的基线信息
Table 2. Baseline informations of 829 pairs of women and their infants, including maternal age, parity, maternal education, pre-pregnancy BMI, annual household income, passive smoking during pregnancy, gestational duration, season of conception, child gender, and birth weight
特征 x±s/人数(占比%) 特征 x±s/人数(占比%) 孕妇年龄/岁 孕期被动吸烟 < 29 461(55.61) 否 549(66.22) ≥29 368(44.39) 是 280(33.78) 产次 孕龄/周 39.46±1.00 初产 713(86.01) 受孕季节 经产 116(13.99) 春(3―5月) 173(20.87) 受教育水平 夏(6―8月) 227(27.38) 高中及以下 181(21.83) 秋(9―11月) 266(32.09) 大专及以上 648(78.17) 冬(12―次年2月) 163(19.66) 孕前BMI/(kg·m-2) 新生儿性别 < 18.5 154(18.58) 男 432(52.11) 18.5 ~ < 24.0 567(68.40) 女 397(47.89) ≥24.0 108(13.03) 出生体重/g 3 332.26±392.45 家庭年均收入/元 < 100 000 475(57.30) ≥100 000 354(42.70) 表 3 暴露的分布及单个暴露与出生体重的关联
Table 3. The concentrations of 33 metals, 8 phenols, 8 phthalates, 3 hydroxybenzoates, 4 benzothiazoles, and 4 benzotriazoles in urine and their respective associations with birth weight
暴露 M(P25, P75) 四分位数间距① β值(95% CI)② P值 邻苯二甲酸酯类/(μg·L-1) MEP 8.42 (4.90, 16.32) 1.20 -5.69(-33.68~22.30) 0.690 MECPP 8.73 (5.71, 12.58) 0.79 12.90(-11.02~36.82) 0.291 MEHHP 5.61 (3.67, 8.15) 0.80 11.19(-15.67~38.05) 0.414 MEOHP 4.43 (2.88, 6.56) 0.82 22.49(-4.28~49.26) 0.100 MiBP 14.70 (7.55, 24.61) 1.18 -3.60(-21.73~14.53) 0.697 MnBP 48.08 (24.03, 88.86) 1.31 -3.50(-29.83~22.82) 0.794 MBzP 0.07 (0.04, 0.13) 1.09 -22.07(-53.06~8.92) 0.163 MEHP 2.02 (0.79, 3.81) 1.57 27.29(-0.89~55.47) 0.058 对羟基苯甲酸酯类/(μg·L-1) MEPA 15.03 (4.98, 47.50) 2.26 -8.61(-43.21~25.99) 0.626 ETPA 0.53 (0.23, 1.43) 1.82 -24.86(-50.97~1.24) 0.062 PrP 0.77 (0.22, 2.87) 2.57 -24.53(-60.89~11.83) 0.186 酚类/(μg·L-1) 4-OH-BP 0.15 (0.08, 0.28) 1.26 -22.16(-53.74~9.42) 0.169 BPS 0.37 (0.18, 0.86) 1.58 -36.76(-66.79~-6.73) 0.017③ 酚类/(μg·L-1) BPA 1.01(0.28, 2.52) 2.18 -12.90(-45.49~19.69) 0.438 BP 0.24(0.11, 0.56) 1.59 -17.85(-46.00~10.29) 0.214 BPAF 0.03(0.02, 0.05) 1.14 6.44(-19.48~32.36) 0.626 BP3 0.40(0.11, 1.20) 2.38 -25.67(-60.52~9.19) 0.149 TCS 0.39(0.12, 1.31) 2.40 2.53(-32.34~37.40) 0.887 BPF 0.66(0.37, 1.34) 1.28 -36.05(-67.59~-4.51) 0.025③ 金属类/(μg·L-1) Al 18.39(9.58, 37.05) 1.35 -26.59(-52.81~-0.37) 0.047 ③ V 0.86(0.33, 1.14) 1.25 -20.6(-53.25~12.06) 0.217 Cr 0.60(0.36, 0.91) 0.94 -15.78(-43.24~11.69) 0.261 Mn 1.04(0.61, 1.85) 1.11 -17.39(-46.83~12.04) 0.247 Fe 24.54(14.45, 41.92) 1.06 -20.67(-51.17~9.83) 0.185 Co 0.37(0.22, 0.55) 0.93 -1.7(-33.08~29.68) 0.916 Ni 1.81(0.92, 2.98) 1.18 -15.25(-45.41~14.92) 0.322 Cu 8.11(4.19, 10.92) 0.96 -5.21(-30.35~19.93) 0.685 Zn 168.00(91.90, 244.21) 0.98 -10.72(-29.51~8.06) 0.264 Ga 0.03(0.02, 0.05) 0.71 -37.82(-68.60~-7.04) 0.016 ③ As 14.63(9.23, 19.99) 0.77 -9.18(-28.53~10.17) 0.353 Se 10.69(7.22, 13.80) 0.65 -15.64(-41.35~10.07) 0.234 Rb 1 158.23(820.89, 1 435.89) 0.56 -5.17(-13.61~3.26) 0.230 Sr 119.25(67.35, 176.09) 0.96 -5.02(-23.09~13.05) 0.586 Ag 0.04(0.02, 0.08) 1.35 -3.11(-45.21~39.00) 0.885 Cd 0.42(0.23, 0.60) 0.97 -15.32(-40.34~9.69) 0.230 Cs 6.23(4.53, 7.57) 0.51 -6.03(-16.72~4.66) 0.269 Ba 5.17(2.68, 8.40) 1.14 -11.16(-42.96~20.64) 0.492 La 0.04(0.01, 0.08) 2.04 -0.16(-36.37~36.04) 0.993 Ce 0.04(0.01, 0.09) 2.11 -0.63(-36.84~35.57) 0.973 Pr 0.01(< 0.01, 0.02) 2.26 -3.33(-40.95~34.29) 0.862 Nd 0.02(0.01, 0.04) 1.71 -6.62(-43.05~29.81) 0.722 Eu 0.01(< 0.01, 0.02) 1.52 -12.48(-53.93~28.97) 0.555 Gd 0.01(< 0.01, 0.02) 1.55 -16.02(-52.98~20.95) 0.396 Dy 0.01(< 0.01, 0.01) 2.02 -8.12(-50.15~33.91) 0.705 Ho 0.01(< 0.01, 0.02) 2.10 -14.96(-59.18~29.26) 0.507 Er 0.01(0.01, 0.02) 1.76 -12.97(-52.99~27.06) 0.526 Tm 0.01(< 0.01, 0.02) 1.91 -11.19(-52.16~29.77) 0.592 Yb 0.01(< 0.01, 0.01) 1.43 -15.23(-55.57~25.11) 0.460 Tl 0.30(0.20, 0.38) 0.64 -16.03(-46.94~14.88) 0.310 Pb 1.91(1.21, 2.74) 0.81 -10.40(-32.85~12.06) 0.364 Th 0.04(0.01, 0.10) 2.06 4.30(-34.43~43.04) 0.828 U 0.03(0.01, 0.05) 2.11 -29.04(-66.48~8.41) 0.129 苯并三唑类/(μg·L-1) 1-H-BTR 0.07(0.02, 0.26) 2.67 10.83(-30.74~52.40) 0.610 1-OH-BTR 0.25(0.06, 0.77) 2.50 8.45(-34.17~51.08) 0.698 XTR 0.05(0.02, 0.11) 1.89 26.58(-9.82~62.99) 0.153 TTR 0.04(0.03, 0.10) 1.36 2.01(-32.11~36.14) 0.908 苯并噻唑类/(μg·L-1) BTH 1.11(0.29, 2.69) 2.24 -47.89(-85.81~-9.96) 0.014③ 2-OH-BTH 0.20(0.06, 0.71) 2.51 -8.08(-48.00~31.84) 0.692 2-MeS-BTH 0.30(0.13, 0.58) 1.51 5.04(-26.35~36.43) 0.753 2-amino-BTH 0.02(0.01, 0.05) 1.48 8.00(-28.75~44.75) 0.670 注:①四分位数间距在经自然对数转换后的暴露浓度中计算; ②模型调整了孕妇年龄、产次、受教育水平、孕前BMI、家庭年均收入、孕期被动吸烟、孕龄、受孕季节和新生儿性别因素; ③ P < 0.05。 -
[1] Vineis P, Barouki R. The exposome as the science of social-to-biological transitions[J]. Environ Int, 2022, 165: 107312. DOI: 10.1016/j.envint.2022.107312. [2] Zhang Y, Mustieles V, Sun Q, et al. Association of early pregnancy perfluoroalkyl and polyfluoroalkyl substance exposure with birth outcomes[J]. JAMA Netw Open, 2023, 6(5): e2314934. DOI: 10.1001/jamanetworkopen.2023.14934. [3] Simões M, Vermeulen R, Portengen L, et al. Exploring associations between residential exposure to pesticides and birth outcomes using the Dutch birth registry[J]. Environ Int, 2023, 178: 108085. DOI: 10.1016/j.envint.2023.108085. [4] Class QA, Rickert ME, Lichtenstein P, et al. Birth weight, physical morbidity, and mortality: a population-based sibling-comparison study[J]. Am J Epidemiol, 2014, 179(5): 550-558. DOI: 10.1093/aje/kwt304. [5] Woods MM, Lanphear BP, Braun JM, et al. Gestational exposure to endocrine disrupting chemicals in relation to infant birth weight: a Bayesian analysis of the HOME study[J]. Environ Health, 2017, 16(1): 115. DOI: 10.1186/s12940-017-0332-3. [6] Agier L, Basagaña X, Hernandez-Ferrer C, et al. Association between the pregnancy exposome and fetal growth[J]. Int J Epidemiol, 2020, 49(2): 572-586. DOI: 10.1093/ije/dyaa017. [7] Chen H, Zhang WX, Zhou YQ, et al. Characteristics of exposure to multiple environmental chemicals among pregnant women in Wuhan, China[J]. Sci Total Environ, 2021, 754: 142167. DOI: 10.1016/j.scitotenv.2020.142167. [8] Ruan FY, Zhang JJ, Liu J, et al. Association between prenatal exposure to metal mixtures and early childhood allergic diseases[J]. Environ Res, 2022, 206: 112615. DOI: 10.1016/j.envres.2021.112615. [9] Jedynak P, Rolland M, Pin I, et al. Pregnancy exposure to phenols and anthropometric measures in gestation and at birth[J]. Epidemiology, 2022, 33(5): 616-623. DOI: 10.1097/EDE.0000000000001515. [10] Kim S, Park E, Park EK, et al. Urinary concentrations of bisphenol mixtures during pregnancy and birth outcomes: the MAKE study[J]. Int J Environ Res Public Health, 2021, 18(19): 10098. DOI: 10.3390/ijerph181910098. [11] Hu J, Zhao HZ, Braun JM, et al. Associations of trimester-specific exposure to bisphenols with size at birth: a Chinese prenatal cohort study[J]. Environ Health Perspect, 2019, 127(10): 107001. DOI: 10.1289/EHP4664. [12] Sol CM, van Zwol-Janssens C, Philips EM, et al. Maternal bisphenol urine concentrations, fetal growth and adverse birth outcomes: a population-based prospective cohort[J]. Environ Health, 2021, 20(1): 60. DOI: 10.1186/s12940-021-00747-6. [13] Liang J, Liu S, Liu T, et al. Association of prenatal exposure to bisphenols and birth size in Zhuang ethnic newborns[J]. Chemosphere, 2020, 252: 126422. DOI: 10.1016/j.chemosphere.2020.126422. [14] Zhou YQ, Li Y, Xu SQ, et al. Prenatal exposure to benzotraizoles and benzothiazoles in relation to fetal and birth size: a longitudinal study[J]. J Hazard Mater, 2020, 398: 122828. DOI: 10.1016/j.jhazmat.2020.122828. [15] Chen H, Zhang WX, Sun XJ, et al. Prenatal exposure to multiple environmental chemicals and birth size[J]. J Expo Sci Environ Epidemiol, 2024, 34(4): 629-636. DOI: 10.1038/s41370-023-00568-4. [16] Li Y, Zhou YQ, Cai ZW, et al. Associations of benzotriazoles and benzothiazoles with estrogens and androgens among pregnant women: a cohort study with repeated measurements[J]. Sci Total Environ, 2022, 838(Pt 2): 155998. DOI: 10.1016/j.scitotenv.2022.155998. [17] Yao Q, Vinturache A, Lei XN, et al. Prenatal exposure to per- and polyfluoroalkyl substances, fetal thyroid hormones, and infant neurodevelopment[J]. Environ Res, 2022, 206: 112561. DOI: 10.1016/j.envres.2021.112561. [18] Yang JL, Chen HC. Growth retardation and histopathology of common carp (Cyprinus carpio) exposed to gallium[J]. Bull Environ Contam Toxicol, 2003, 71(2): 240-247. DOI: 10.1007/s00128-003-0156-4. [19] Zhu GM, Wen YC, Cao KX, et al. A review of common statistical methods for dealing with multiple pollutant mixtures and multiple exposures[J]. Front Public Health, 2024, 12: 1377685. DOI: 10.3389/fpubh.2024.1377685. -