-
摘要:
目的 了解土地覆盖与肾综合征出血热(hemorrhagic fever with renal syndrome, HFRS)发病风险的关联。 方法 以甘肃省HRFS流行地区为研究区域, 收集2012年1月―2022年12月的HRFS病例资料及土地覆盖类型资料, 以各县(区)及自然年为研究单位, 使用泊松回归估计主要土地覆盖类型及土地覆盖类型比例与HRFS关联强度指标的相对危险度, 使用限制性立方样条估计其主要土地覆盖类型比例与HRFS的暴露-反应关系。 结果 以草地为主要土地覆盖类型地区的HFRS发病风险是以农田为主地区的2.781倍(95% CI: 2.336~3.310, P<0.01), 而以森林和灌木为主要土地覆盖类型地区的HFRS发病风险低于农田, 其RR值分别为0.455(95% CI: 0.319~0.648, P<0.01)和0.130(95% CI: 0.041~0.401, P<0.01)。HRFS发病风险随农田、荒地覆盖类型比例的增加而下降, 随草地覆盖类型比例的增加而上升, 与森林、灌木覆盖类型比例呈倒“V”型关系。 结论 甘肃省土地覆盖与HFRS发病风险有关联。HFRS防控策略与措施的制定应考虑土地覆盖及其变化, 以减少对HFRS的流行风险。 Abstract:Objective To explore the relationship between land cover and the risk of hemorrhagic fever with renal syndrome (HFRS). Methods Annual HFRS cases and landcover in epidemic areas of Gansu Province during January 1, 2012 and December 31, 2022 were collected and analyzed. Poisson regression model was applied to assess the relative risk of main land cover, landcover percentage and the risk of HFRS, and restricted cubic spline was applied to determine the corresponding exposure-response relationship. Results The HFRS risk in areas with main land cover of grassland was 2.781 (95% CI: 2.336-3.310, P < 0.01) times in comparison with which in cropland areas, and the risk of forests and shrub areas was lower than which in cropland areas, with the coresponding RRs were 0.455(95% CI: 0.319-0.648, P < 0.01) and 0.130(95% CI: 0.041-0.401, P < 0.01). And the risk of HFRS increased with the percentages of grassland increasing, decreased with the percentage of cropland and barren increasing, and showed an inverse V-shaped relationship with the percentage of forests and shrub. Conclusions Land cover is associated with the risk of HFRS. The formulation of prevention and control strategies and measures for HFRS should consider land cover and its changes to reduce the epidemic risk of HFRS. -
Key words:
- Land cover /
- Hemorrhagic fever with renal syndrome /
- Association
-
表 1 甘肃省2012―2022年肾综合征出血热病例的基线特征
Table 1. Baseline characteristics of hemorrhagic fever with renal syndrome cases in Gansu Province from 2012 to 2022
基线特征 病例数① (n=1 076) 基线特征 病例数① (n=1 076) 性别 职业 男 706(65.6) 学生/幼托儿童 122(11.3) 女 370(34.4) 其他 75(7.0) 年龄组/岁 县(区) < 15 49(4.6) 岷县 474(44.1) 15~ < 40 329(30.6) 夏河县 191(17.8) 40~ < 65 598(55.6) 灵台县 133(12.4) ≥65 100(9.2) 合作市 63(5.9) 职业 清水县 32(3.0) 农民 683(63.5) 其他县(区) 183(16.9) 牧民 196(18.2) 注:①以人数(占比/%)表示。 表 2 甘肃省土地覆盖类型与肾综合征出血热的关联关系
Table 2. Association of land cover type and the risk of hemorrhagic fever with renal syndrome in Gansu Province, 2012-2022
土地覆盖类型 RR值① RR值② RR值③ RR值④ 农田 1.000 1.000 0.837 (0.819~0.854) 0.801 (0.736~0.871) 森林 0.455 (0.319~0.648) 0.329 (0.219~0.496) 0.970 (0.953~0.987) 0.923 (0.814~1.047) 草地 2.781 (2.336~3.310) 2.801 (2.346~3.344) 1.141 (1.126~1.155) 1.113 (1.091~1.136) 灌木 0.130 (0.041~0.401) 0.121 (0.039~0.379) 0.883 (0.849~0.918) 0.761 (0.001~767.161) 荒地 ― ― 0.024 (0.010~0.054) ― 注:“―”因无分析单位的主要土地覆盖类型为荒地, 故无相应的分析结果。
①以农田为参照, 不同土地覆盖类型与肾综合征出血热发病风险的关系; ②在457个主要土地利用类型占比≥40%的分析单位中进行敏感性分析; ③土地覆盖类型比例每增加5%, 肾综合征出血热的相对发病风险; ④在所分析土地覆盖类型为主要土地覆盖类型的分析单位中进行敏感性分析。 -
[1] Avšiĉ-Županc T, Saksida A, Korva M. Hantavirus infections[J]. Clin Microbiol Infect, 2019, 21: e6-e16. DOI: 10.1111/1469-0691.12291. [2] Watson DC, Sargianou M, Papa AN, et al. Epidemiology of hantavirus infections in humans: a comprehensive, global overview[J]. Crit Rev Microbiol, 2014, 40(3): 261-272. DOI: 10.3109/1040841X.2013.783555. [3] Wu HC, Wang XY, Xue M, et al. Spatial-temporal characteristics and the epidemiology of haemorrhagic fever with renal syndrome from 2007 to 2016 in Zhejiang Province, China[J]. Sci Rep, 2018, 8(1): 10244. DOI: 10.1038/s41598-018-28610-8. [4] Tian HY, Stenseth NC. The ecological dynamics of hantavirus diseases: from environmental variability to disease prevention largely based on data from China[J]. PLoS Negl Trop Dis, 2019, 13(2): e0006901. DOI: 10.1371/journal.pntd.0006901. [5] Xiao H, Lin XL, Gao LD, et al. Ecology and geography of hemorrhagic fever with renal syndrome in Changsha, China[J]. BMC Infect Dis, 2013, 13: 305. DOI: 10.1186/1471-2334-13-305. [6] Zhu LL, Lu L, Li SJ, et al. Spatiotemporal variations and potential influencing factors of hemorrhagic fever with renal syndrome: a case study in Weihe Basin, China[J]. PLoS Negl Trop Dis, 2023, 17(4): e0011245. DOI: 10.1371/journal.pntd.0011245. [7] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth Syst Sci Data, 2021, 13(8): 3907-3925. DOI: 10.5194/essd-13-3907-2021. [8] 王鸿宇, 赵宛莹, 石昊宁, 等. 山东省潍坊市2013—2019年鼠类生态特征及其与气象因素的相关性研究[J]. 中国媒介生物学及控制杂志, 2022, 33(6): 834-837. DOI: 10.11853/j.issn.1003.8280.2022.06.013.Wang HY, Zhao WY, Shi HN, et al. Ecological characteristics of rodents and their correlation with meteorological factors in Weifang, Shandong province, 2013-2019[J]. Chin J Vector Biol Control, 2022, 33(6): 834-837. DOI: 10.11853/j.issn.1003.8280.2022.06.013. [9] 张宗祥, 陈忠妙, 崔清荣, 等. 2000—2005年浙江省台州市肾综合征出血热监测研究[J]. 疾病监测, 2007, 22(3): 156-158. DOI: 10.3784/j.issn.1003-9961.2007.03.006.Zhang ZX, Chen ZM, Cui QR, et al. Surveillance of hemorrhagic fever with renal syndrome(HFRS)in TaiZhou City from 2000 to 2005[J]. Dis Surveill, 2007, 22(3): 156-158. DOI: 10.3784/j.issn.1003-9961.2007.03.006. [10] Gibb R, Redding DW, Chin KQ, et al. Zoonotic host diversity increases in human-dominated ecosystems[J]. Nature, 2020, 584(7821): 398-402. DOI: 10.1038/s41586-020-2562-8. [11] 张龙生, 程小云, 李萍, 等. 甘肃省森林资源现状及动态变化分析[J]. 林业与环境科学, 2020, 36(3): 73-79. DOI: 10.3969/j.issn.1006-4427.2020.03.013.Zhang LS, Cheng XY, Li P, et al. Analysis on status and dynamic change of forest resources in Gansu Province[J]. Forestry and Environmental Scienceen, 2020, 36(3): 73-79. DOI: 10.3969/j.issn.1006-4427.2020.03.013. -