• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于传染病症状监测数据的时间序列和时空聚集性

段玮 周晓芳 段丽忠 杨静雯 伏晓庆 王晓雯

段玮, 周晓芳, 段丽忠, 杨静雯, 伏晓庆, 王晓雯. 基于传染病症状监测数据的时间序列和时空聚集性[J]. 中华疾病控制杂志, 2025, 29(3): 332-339. doi: 10.16462/j.cnki.zhjbkz.2025.03.013
引用本文: 段玮, 周晓芳, 段丽忠, 杨静雯, 伏晓庆, 王晓雯. 基于传染病症状监测数据的时间序列和时空聚集性[J]. 中华疾病控制杂志, 2025, 29(3): 332-339. doi: 10.16462/j.cnki.zhjbkz.2025.03.013
DUAN Wei, ZHOU Xiaofang, DUAN Lizhong, YANG Jingwen, FU Xiaoqing, WANG Xiaowen. Research on predictive analysis methods for symptom monitoring based on time series and spatio-temporal aggregation detection[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(3): 332-339. doi: 10.16462/j.cnki.zhjbkz.2025.03.013
Citation: DUAN Wei, ZHOU Xiaofang, DUAN Lizhong, YANG Jingwen, FU Xiaoqing, WANG Xiaowen. Research on predictive analysis methods for symptom monitoring based on time series and spatio-temporal aggregation detection[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(3): 332-339. doi: 10.16462/j.cnki.zhjbkz.2025.03.013

基于传染病症状监测数据的时间序列和时空聚集性

doi: 10.16462/j.cnki.zhjbkz.2025.03.013
段玮和周晓芳为共同第一作者
基金项目: 

云南省科技重大专项云南省急性传染病综合监测预警体系构建研究 202102AA100019

详细信息
    通讯作者:

    王晓雯,E-mail: wxw_ph@163.com

    伏晓庆,E-mail: fxq_05@163.com

  • 中图分类号: R51;R181.2

Research on predictive analysis methods for symptom monitoring based on time series and spatio-temporal aggregation detection

DUAN Wei and ZHOU Xiaofang contributed equally to this article
Funds: 

Yunnan Provincial Science and Technology Major Project on the Construction of Comprehensive Monitoring and Early Warning System for Acute Infectious Diseases in Yunnan Province 202102AA100019

More Information
  • 摘要:   目的   探索基于时间序列和时空聚集性探测的症状监测预测方法,为有效分析和利用症状监测数据提供参考依据。   方法   采用差分自回归移动平均(autoregressive integrated moving average, ARIMA)模型和Holt-Winters模型进行时间序列分析,通过回顾性时空聚集性探测进行聚集区域和时间综合探测分析。   结果   以在X市监测为例,2023年1月1日―2023年4月30日共监测到34 207人次出现与传染病相关症状并前往医疗机构就诊。4月1日―4月19日的模型预测值与实际监测值比较发现,Holt-Winters模型对数据的预测情况优于ARIMA模型,误差更小,几乎所有实际值均在预测值95% CI内。时空扫描分析结果显示,某市就诊人群中具有所监测症状者居住社区涵盖该市9个街道,发热、咳嗽、腹痛和头痛的1类聚集地为D街道、E街道、F街道、G街道和A街道;咽痛和恶心的1类聚集地为D街道、A街道和G街道;腹泻和呕吐的1类集聚地为G街道和D街道。所监测症状的发生时间主要集中在2022年12月―2023年4月。   结论   Holt-Winters模型对症状数据具有较好的时间趋势预测效果,通过对症状监测数据进行时空扫描分析可及时发现传染病的聚集情况,为防控工作提供重要的空间、时间和时空联合指示。症状监测数据可被用于监测传染病的潜在流行情况,为实现早期预警提供参考。
  • 图  1  时间序列、ACF、PACF图

    ACF:自相关函数;PACF:偏自相关函数。

    Figure  1.  Time series, ACF, and PACF graphs

    ACF: autocorrelation function; PACF: partial autocorrelation function.

    图  2  ARIMA和Holt-Winters建模比较

    A:ARIMA模型;B:Holt-Winters模型。

    Figure  2.  Comparison of ARIMA and Holt-Winters modeling

    A: autoregressive integrated moving average model; B: Holt-Winters model.

    图  3  2022年8月―2023年9月某市所监测症状时间分布图

    2023年5月未收集到数据。

    Figure  3.  Temporal distribution of monitored symptoms in a city from August 2022 to September 2023

    No date were collected in May 2023.

    表  1  某市9个街道所监测症状发生率

    Table  1.   Incidence of symptoms monitored in 9 streets of a city

    地区Area 监测症状发生率Incidence of monitored symptoms/%
    发热
    Fever
    咳嗽
    Cough
    咽痛
    Sore
    throat
    腹泻
    Diarrhoea
    腹痛
    Abdominal pain
    恶心
    Nausea
    呕吐
    Vomiting
    头痛
    Headache
    A街道A street 1.04 1.04 0.10 0.30 1.22 0.11 0.16 0.36
    B街道B street 0.36 0.25 0.04 0.09 0.36 0.03 0.05 0.10
    C街道C street 1.23 1.17 0.08 0.43 2.12 0.13 0.23 0.49
    D街道D street 3.68 2.19 0.12 0.81 3.43 0.30 0.65 0.92
    E街道E street 1.95 1.26 0.06 0.53 2.60 0.06 0.19 0.74
    F街道F street 0.51 0.32 0.02 0.08 0.59 0.02 0.07 0.09
    G街道G street 1.65 1.04 0.08 0.49 1.86 0.11 0.36 0.39
    H街道H street 1.23 0.56 0.03 0.24 0.97 0.01 0.18 0.22
    I街道I street 0.69 0.35 0.03 0.22 0.74 0.05 0.13 0.19
    下载: 导出CSV

    表  2  2022年8月―2023年9月某市所监测症状的时空扫描分析

    Table  2.   Spatio-temporal scanning analysis with monitored symptoms in a city from August 2022 to September 2023

    症状
    Symptom
    聚集区类型
    Cluster type
    聚集区域
    Cluster area
    聚集时间/(年-月)
    Cluster time
    (year-month)
    实际发病数
    Number of cases
    理论发病数
    Expected cases
    LLR
    value
    RR
    value
    P
    value
    发热Fever 1 D街道、E街道、F街道、G街道、A街道
    D street, E street, F street, G street, A street
    2022-11―2023-04 1 732 915.95 383.57 2.42 < 0.05
    2 H街道H street 2022-11―2022-12 170 59.48 69.34 2.93 < 0.05
    3 C街道C street                2023-03 85 21.47 53.86 4.01 < 0.05
    咳嗽Cough 1 D街道、E街道、F街道、G街道、A街道
    D street, E street, F street, G street, A street
    2022-12―2023-01 1 021 237.60 806.82 5.64 < 0.05
    2 C街道C street 2022-12―2023-04 229 79.21 96.63 3.02 < 0.05
    3 H街道H street 2022-12―2023-01 95 45.79 20.48 2.10 < 0.05
    咽痛Sore throat 1 D街道、A街道、G街道D street, A street, G street 2022-11―2023-01 86 27.41 46.48 3.99 < 0.05
    腹泻Diarrhoea 1 G街道、D街道G street, D street 2023-03―2023-09 170 57.01 78.10 3.28 < 0.05
    2 C街道C street 2023-01―2023-07 95 40.59 27.85 2.45 < 0.05
    3 I街道、A街道I street, A street 2023-03―2023-04 154 90.82 19.84 1.79 < 0.05
    腹痛Abdominal pain 1 E街道、F街道、G街道、D街道、A街道
    E street, F street, G street, D street, A street
    2023-03―2023-04 723 347.31 169.21 2.25 < 0.05
    2 C街道C street 2023-03―2023-07 309 119.23 108.04 2.69 < 0.05
    3 H街道H street 2023-03―2023-04 110 66.93 11.76 1.66 < 0.05
    恶心Nausea 1 D街道、A街道、G街道D street, A street, G street 2022-12―2023-04 105 55.82 21.15 2.22 < 0.05
    2 C街道C street 2022-11―2023-03 22 8.44 7.77 2.71 < 0.05
    呕吐Vomiting 1 G街道、D街道G street, D street 2023-03―2023-07 95 24.08 62.99 4.37 < 0.05
    2 C街道、I街道C street, I street 2023-03―2023-04 58 24.53 17.22 2.48 < 0.05
    头痛Headache 1 E街道、F街道、G街道、D街道、A街道
    E street, F street, G street, D street, A street
    2022-10―2023-04 464 316.09 41.07 1.71 < 0.05
    2 C街道C street 2023-06―2023-09 56 24.90 14.65 2.30 < 0.05
    下载: 导出CSV
  • [1] Rader B, Scarpino SV, Nande A, et al. Crowding and the shape of COVID-19 epidemics[J]. Nat Med, 2020, 26(12): 1829-1834. DOI: 10.1038/s41591-020-1104-0.
    [2] Chen H, Zeng D, Yan P. Infectious disease informatics syndrome surveillance for public health and bio-defense[M]. Beijing Science Press, 2011: 1-9.
    [3] Papadomanolakis-Pakis N, Maier A, van Dijk A, et al. Development and assessment of a hospital admissions-based syndromic surveillance system for COVID-19 in Ontario, Canada: ACES Pandemic Tracker[J]. BMC Public Health, 2021, 21(1): 1230. DOI: 10.1186/s12889-021-11303-9.
    [4] Güemes A, Ray S, Aboumerhi K, et al. A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States[J]. Sci Rep, 2021, 11(1): 4660. DOI: 10.1038/s41598-021-84145-5.
    [5] Daisuke Y, Yuta T, Takayuki K, et al. Large-scale epidemiological monitoring of the COVID-19 epidemic in Tokyo[J]. Lancet Reg Health, 2020, 3: 100016. DOI: 10.1016/j.lanwpc.2020.100016.
    [6] Mahmud AS, Chowdhury S, Sojib KH, et al. Participatory syndromic surveillance as a tool for tracking COVID-19 in Bangladesh[J]. Epidemics, 2021, 35: 100462. DOI: 10.1016/j.epidem.2021.100462.
    [7] Fulcher IR, Boley EJ, Gopaluni A, et al. Syndromic surveillance using monthly aggregate health systems information data: methods with application to COVID-19 in Liberia[J]. Int J Epidemiol, 2021, 50(4): 1091-1102. DOI: 10.1093/ije/dyab094.
    [8] Gong MC, Liu L, Sun X, et al. Cloud-based system for effective surveillance and control of COVID-19: useful experiences from Hubei, China[J]. J Med Int Res, 2020, 22(4): e18948. DOI: 10.2196/18948.
    [9] Wang XY, Zhang Y, Gong WS. Analysis of the monitoring data of fever clinic symptoms during the pandemic of new coronavirus pneumonia in Xiangyang City[J]. J Public Health Prev Med, 2020, 31(4): 28-30. DOI: 10.1111/inr.12636.
    [10] Project TS. Assessment of syndromic surveillance in Europe[J]. Lancet, 2011, 378(9806): 1833-1834. DOI: 10.1016/S0140-6736(11)60834-9.
    [11] Hu WH, Sun HM, Wei YY, et al. Global infectious disease early warning models: an updated review and lessons from the COVID-19 pandemic[J]. Infect Dis Model, 2024, 10(2): 410-422. DOI: 10.1016/j.idm.2024.12.001.
    [12] Botz J, Wang DQ, Lambert N, et al. Modeling approaches for early warning and monitoring of pandemic situations as well as decision support[J]. Front Public Health, 2022, 10: 994949. DOI: 10.3389/fpubh.2022.994949.
    [13] Swapnarekha H, Behera HS, Nayak J, et al. Multiplicative Holts Winter model for trend analysis and forecasting of COVID-19 spread in India[J]. SN Computer Science, 2021, 2(5): 416. DOI: 10.1007/s42979-021-00808-0.
    [14] 马涛, 谢国祥, 孙红敏, 等. 2009―2016年南京市重症手足口病流行特征和时空聚集性分析[J]. 中华疾病控制杂志, 2018, 22(11): 1138-1143. DOI: 10.16462/j.cnki.zhjbkz.2018.11.011.

    Ma T, Xie GX, Sun HM et al. Analysis of epidemiological characteristics and temporal-spatial clustering analysis of severe hand-foot-mouth disease in Nanjing from 2009 to 2016[J]. Chin J Dis Control Prev, 2018, 22(11): 1138-1143. DOI: 10.16462/j.cnki.zhjbkz.2018.11.011.
    [15] Bagalkot SS, Dinesha HA, Naik N. Novel grey wolf optimizer based parameters selection for GARCH and ARIMA models for stock price prediction[J]. PeerJ Comput Sci, 2024, 10: e1735. DOI: 10.7717/peerj-cs.1735.
    [16] Lou HR, Wang X, Gao Y, et al. Comparison of ARIMA model, DNN model and LSTM model in predicting disease burden of occupational pneumoconiosis in Tianjin, China[J]. BMC Public Health, 2022, 22(1): 2167. DOI: 10.1186/s12889-022-14642-3.
    [17] 郑艳妮, 赵玉锐, 梁莉萍, 等. 基于SARIMA、Holt-Winters与Prophet三种时间序列模型的2021年武威市丙型病毒性肝炎发病预测[J]. 疾病预防控制通报, 2023, 38(5): 49-53, 68. DOI: 10.13215/j.cnki.jbyfkztb.2303005.

    Zheng YN, Zhao YR, Liang LP, et al. Forecasting the incidence of viral hepatitis C in Wuwei City in 2021 based on three time series models: SARIMA, Holt-Winters and Prophet[J]. Bull Dis Control Prev, 2023, 38(5): 49-53, 68. DOI: 10.13215/j.cnki.jbyfkztb.2303005.
    [18] Xian XB, Wang L, Wu XH, et al. Comparison of SARIMA model, Holt-Winters model and ETS model in predicting the incidence of foodborne disease[J]. BMC Infect Dis, 2023, 23(1): 803. DOI: 10.1186/s12879-023-08799-4.
    [19] Wang N, Zhuang WY, Ran Z, et al. Prediction of acute onset of chronic cor pulmonale: comparative analysis of Holt-Winters exponential smoothing and ARIMA model[J]. BMC Med Res Methodol, 2024, 24(1): 204. DOI: 10.1186/s12874-024-02325-z.
    [20] Deng LL, Han YJ, Wang JL, et al. Epidemiological characteristics of notifiable respiratory infectious diseases in Mainland China from 2010 to 2018[J]. Int J Environ Res Public Health, 2023, 20(5): 3946. DOI: 10.3390/ijerph20053946.
    [21] Si XH, Wang LP, Mengersen K, et al. Epidemiological features of seasonal influenza transmission among 11 climate zones in Chinese Mainland[J]. Infect Dis Poverty, 2024, 13(1): 4. DOI: 10.1186/s40249-024-01173-9.
    [22] 梅琳, 张弢, 胡弘, 等. 基于医疗机构的突发呼吸道传染病症状监测预警机制研究[J]. 中国医院管理, 2022, 42(2): 54-56, 68.

    Mei L, Zhang T, Hu H et al. Research on the monitoring and early warning mechanism of sudden respiratory infectious disease symptoms based on medical institutions[J]. Chinese Hospital Management, 2022, 42(2): 54-56, 68.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  22
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-18
  • 修回日期:  2024-09-09
  • 网络出版日期:  2025-04-11
  • 刊出日期:  2025-03-10

目录

    /

    返回文章
    返回