Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 26 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
XUE Fu-zhong. Interpretation of the theoretical model of big data eco-epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(10): 1129-1136. doi: 10.16462/j.cnki.zhjbkz.2022.10.004
Citation: XUE Fu-zhong. Interpretation of the theoretical model of big data eco-epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(10): 1129-1136. doi: 10.16462/j.cnki.zhjbkz.2022.10.004

Interpretation of the theoretical model of big data eco-epidemiology

doi: 10.16462/j.cnki.zhjbkz.2022.10.004
Funds:

National Key Research and Development Program of China 2020YFC2003500

More Information
  • Corresponding author: XUE Fu-zhong, E-mail: xuefzh@sdu.edu.cn
  • Received Date: 2022-07-22
  • Rev Recd Date: 2022-09-02
  • Publish Date: 2022-10-10
  • Nowadays, digital technology has become a new type of health determinant, which not only changes society, economy, city and family, but also affects human health; human beings have entered a new digital virtual world. Therefore, in the theoretical paradigm of big data eco-epidemiology, the real world eco-epidemiological model and the virtual world eco-epidemiological model form a relatively independent community with mutual game interaction, both of which are mediated by epigenetics, and they play games and depend on each other among the genome-centric multi-omics factors, health determinants of real world and virtual world; thus, a new etiological framework of eco-epidemiology with interactive games of health determinants in many mosaic levels is formed. The two eco-epidemiological models of the real world and the virtual world play a role through the one health model with digital technology as a "double-edged sword".
  • loading
  • [1]
    薛付忠. 大数据生态流行病学理论模型[J]. 中华疾病控制杂志, 2022, 26(10): 1124-1128. DOI: 10.16462/j.cnki.zhjbkz.2022.10.003.

    Xue FZ. The theoretical model of big data eco-epidemiology[J]. Chin J Dis Control Prev, 2022, 26(10): 1124-1128. DOI: 10.16462/j.cnki.zhjbkz.2022.10.003.
    [2]
    Göran D, Whitehead M. Policies and strategies to promote social equity in health[J]. 1991.
    [3]
    Coutts C, Hahn M. Green infrastructure, ecosystem services, and human health[J]. Int J Environ Res Public Health, 2015, 12(8): 9768-9798. DOI: 10.3390/ijerph120809768.
    [4]
    Centers for Disease Control and Prevention. Social Ecological Model (2022)[EB/OL]. (2022-01-18)[2022-07-18]. https://www.cdc.gov/violenceprevention/about/social-ecologicalmodel.html.
    [5]
    Whitmee S, Haines A, Beyrer C, et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation-Lancet Commission on planetary health[J]. lancet, 2015, 386(10007): 1973-2028. DOI: 10.1016/s0140-6736(15)60901-1.
    [6]
    Wolfson MC. POHEM: a framework for understanding and modelling the health of human populations[J]. World health statistics quarterly, 1994, 47(3/4): 157-176.
    [7]
    Schoner J, Chapman J, Brookes A, et al. Bringing health into transportation and land use scenario planning: Creating a National Public Health Assessment Model (N-PHAM)[J]. J Transp Health, 2018, 10: 401-418. DOI: 10.1016/j.jth.2018.04.008.
    [8]
    Calistri P, Iannetti S, L. Danzetta M, et al. The components of 'One World - One Health' approach[J]. Transbound Emerg Dis, 2013, 60: 4-13. DOI: 10.1111/tbed.12145.
    [9]
    Woldehanna S, Zimicki S. An expanded One Health model: integrating social science and One Health to inform study of the human-animal interface[J]. Soc Sci Med, 2015, 129: 87-95. DOI: 10.1016/j.socscimed.2014.10.059.
    [10]
    Destoumieux-Garzón D, Mavingui P, Boetsch G, et al. The one health concept: 10 years old and a long road ahead[J]. Front Vet Sci, 2018: 14. DOI: 10.3389/fvets.2018.00014.
    [11]
    Van Bruggen AHC, Goss EM, Havelaar A, et al. One Health-Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health[J]. Sci Total Environ, 2019, 664: 927-937. DOI: 10.1016/j.scitotenv.2019.02.091.
    [12]
    Rice L, Sara R. Updating the determinants of health model in the Information Age[J]. Health Promot Int, 2019, 34(6): 1241-1249. DOI: 10.1093/heapro/day064.
    [13]
    Korda H, Itani Z. Harnessing social media for health promotion and behavior change[J]. Health Promot Pract, 2013, 14(1): 15-23. DOI: 10.1177/1524839911405850.
    [14]
    Best P, Manktelow R, Taylor B. Online communication, social media and adolescent wellbeing: A systematic narrative review[J]. Child Youth Serv Rev, 2014, 41: 27-36. DOI: 10.1016/j.childyouth.2014.03.001.
    [15]
    Smith AK, Conneely KN, Kilaru V, et al. Differential immune system DNA methylation and cytokine regulation in post‐traumatic stress disorder[J]. Am J Med Genet B Neuropsychiatr Genet, 2011, 156(6): 700-708. DOI: 10.1002/ajmg.b.31212.
    [16]
    Chen GM. The impact of new media on intercultural communication in global context[J]. 2012, 93(1): 79-84. DOI: 10.1111/j.1476-5381.1988.tb11407.x.
    [17]
    Gretton CHM. The digital revolution: eight technologies that will change health and care (2016)[EB/OL]. (2016-01-30)[2022-07-18]. https://www.kingsfund.org.uk/publications/digital-revolution.
    [18]
    Robinson SW, Fernandes M, Husi H. Current advances in systems and integrative biology[J]. Comput Struct Biotechnol J, 2014, 11(18): 35-46. DOI: 10.1016/j.csbj.2014.08.007.
    [19]
    Haring R, Wallaschofski H. Diving through the "-omics": the case for deep phenotyping and systems epidemiology[J]. OMICS, 2012, 16(5): 231-234. DOI: 10.1089/omi.2011.0108.
    [20]
    Shields RK, Dudley-Javoroski S. Epigenetics and the International Classification of Functioning, Disability and Health model: bridging nature, nurture, and patient-centered population health[J]. Phys Ther, 2022, 102(1): pzab247. DOI: 10.1093/ptj/pzab247.
    [21]
    March D, Susser E. The eco-in eco-epidemiology[J]. Int J Epidemiol, 2006, 35(6): 1379-1383. DOI: 10.1093/ije/dyl249.
    [22]
    Zannas AS. Epigenetics as a key link between psychosocial stress and aging: concepts, evidence, mechanisms[J]. Dialogues Clin Neurosci, 2019, 21(4): 389-396. DOI: 10.31887/dcns.2019.21.4/azannas.
    [23]
    Menon DR, Hammerlindl H, Torrano J, et al. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer[J]. Theranostics, 2020, 10(14): 6261-6277. DOI: 10.7150/thno.42523.
    [24]
    Uchida Y, Kitayama S, Akutsu S, et al. Optimism and the conserved transcriptional response to adversity[J]. Health Psychol, 2018, 37(11): 1077-1080. DOI: 10.1037/hea0000675.
    [25]
    Argentieri MA, Nagarajan S, Seddighzadeh B, et al. Epigenetic pathways in human disease: the impact of DNA methylation on stress-related pathogenesis and current challenges in biomarker development[J]. EBioMedicine, 2017, 18: 327-350. DOI: 10.1016/j.ebiom.2017.03.044.
    [26]
    Blacker CJ, Frye MA, Morava E, et al. A review of epigenetics of PTSD in comorbid psychiatric conditions[J]. Genes, 2019, 10(2): 140. DOI: 10.3390/genes10020140.
    [27]
    Morris G, Berk M, Maes M, et al. Socioeconomic deprivation, adverse childhood experiences and medical disorders in adulthood: mechanisms and associations[J]. Mol Neurobiol, 2019, 56(8): 5866-5890. DOI: 10.1007/s12035-019-1498-1.
    [28]
    Park C, Rosenblat JD, Brietzke E, et al. Stress, epigenetics and depression: a systematic review[J]. Neurosci Biobehav Rev, 2019, 102: 139-152. DOI: 10.1016/j.neubiorev.2019.04.010.
    [29]
    Aten S, Page CE, Kalidindi A, et al. miR-132/212 is induced by stress and its dysregulation triggers anxiety-related behavior[J]. Neuropharmacology, 2019, 144: 256-270. DOI: 10.1016/j.neuropharm.2018.10.020.
    [30]
    Lee RS, Oswald LM, Wand GS. Early life stress as a predictor of co-occurring alcohol use disorder and post-traumatic stress disorder[J]. Alcohol Res, 2018, 39(2): 147-159.
    [31]
    Lam D, Ancelin M-L, Ritchie K, et al. DNA methylation and genetic variation of the angiotensin converting enzyme (ACE) in depression[J]. Psychoneuroendocrinology, 2018, 88: 1-8. DOI: 10.1016/j.psyneuen.2017.11.003.
    [32]
    Bustamante AC, Aiello AE, Guffanti G, et al. FKBP5 DNA methylation does not mediate the association between childhood maltreatment and depression symptom severity in the Detroit Neighborhood Health Study[J]. J Psychiatr Res, 2018, 96: 39-48. DOI: 10.1016/j.jpsychires.2017.09.016.
    [33]
    Alexander N, Kirschbaum C, Wankerl M, et al. Glucocorticoid receptor gene methylation moderates the association of childhood trauma and cortisol stress reactivity[J]. Psychoneuroendocrinology, 2018, 90: 68-75. DOI: 10.1016/j.psyneuen.2018.01.020.
    [34]
    Cowan CS, Callaghan BL, Kan JM, et al. The lasting impact of early‐life adversity on individuals and their descendants: Potential mechanisms and hope for intervention[J]. Genes Brain Behav, 2016, 15(1): 155-168. DOI: 10.1111/gbb.12263.
    [35]
    Scorza P, Duarte CS, Hipwell AE, et al. Research review: intergenerational transmission of disadvantage: epigenetics and parents' childhoods as the first exposure[J]. J Child Psychol Psychiatry, 2019, 60(2): 119-132. DOI: 10.1111/jcpp.12877.
    [36]
    Kang HJ, Bae KY, Kim SW, et al. Longitudinal associations between glucocorticoid receptor methylation and late-life depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 84: 56-62. DOI: 10.1016/j.pnpbp.2018.02.004.
    [37]
    Malepfane N, Muchaonyerwa P. Hair from different ethnic groups vary in elemental composition and nitrogen and phosphorus mineralisation in soil[J]. Environ Monit Assess, 2017, 189(2): 76. DOI: 10.1007/s10661-017-5776-y.
    [38]
    Roufayel R, Kadry S. Molecular chaperone HSP70 and key regulators of apoptosis-a review[J]. Curr Mol Med, 2019, 19(5): 315-325. DOI: 10.2174/1566524019666190326114720.
    [39]
    Holmes JrL, Shutman E, Chinaka C, et al. Aberrant epigenomic modulation of glucocorticoid receptor gene (NR3C1) in early life stress and major depressive disorder correlation: systematic review and quantitative evidence synthesis[J]. Int J Environ Res Public Health, 2019, 16(21): 4280. DOI: 10.3390/ijerph16214280.
    [40]
    Rabbie R, Lau D, White R M, et al. Unraveling the cartography of the cancer ecosystem[M]. Springer. 2021: 1-9.
    [41]
    Wang Y, Ma S, Ruzzo WL. Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities[J]. Sci Rep, 2020, 10(1): 3490. DOI: 10.1038/s41598-020-60384-w.
    [42]
    Gatenbee CD, Minor ES, Slebos RJ, et al. Histoecology: Applying ecological principles and approaches to describe and predict tumor ecosystem dynamics across space and time[J]. Cancer Control, 2020, 27(3): 1073274820946804. DOI: 10.1177/1073274820946804.
    [43]
    Hochberg ME. An ecosystem framework for understanding and treating disease[J]. Evol Med Public Health, 2018, 2018(1): 270-286. DOI: 10.1093/emph/eoy032.
    [44]
    Repetti RL, Taylor SE, Seeman TE. Risky families: family social environments and the mental and physical health of offspring[J]. Psychol bull, 2002, 128(2): 330-366. DOI: 10.1037/0033-2909.128.2.330.
    [45]
    Felitti VJ, Anda RF, Nordenberg D, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The Adverse Childhood Experiences (ACE) Study[J]. Am J Prev Med, 1998, 14(4): 245-258. DOI: 10.1016/s0749-3797(98)00017-8.
    [46]
    Theall KP, Brett ZH, Shirtcliff EA, et al. Neighborhood disorder and telomeres: Connecting children's exposure to community level stress and cellular response[J]. Soc Sci Med, 2013, 85: 50-58. DOI: 10.1016/j.socscimed.2013.02.030.
    [47]
    Theall KP, Shirtcliff EA, Dismukes AR, et al. Association between neighborhood violence and biological stress in children[J]. JAMA Pediatr, 2017, 171(1): 53-60. DOI: 10.1001/jamapediatrics.2016.2321.
    [48]
    Rasmussen LJH, Moffitt TE, Arseneault L, et al. Association of adverse experiences and exposure to violence in childhood and adolescence with inflammatory burden in young people[J]. JAMA pediatr, 2020, 174(1): 38-47. DOI: 10.1001/jamapediatrics.2019.3875.
    [49]
    Reuben A, Sugden K, Arseneault L, et al. Association of neighborhood disadvantage in childhood with DNA methylation in young adulthood[J]. JAMA Netw Open, 2020, 3(6): e206095-e206095. DOI: 10.1001/jamanetworkopen.2020.6095.
    [50]
    Evans Gw C S. Environmental Stress[M]. Elsevier, 2004: 815-824.
    [51]
    Ellen IG, Mijanovich T, Dillman K. Neighborhood effects on health: exploring the links and assessing the evidence[J]. Journal of urban affairs, 2001, 23(3-4): 391-408. DOI: 10.1111/0735-2166.00096.
    [52]
    Ford AE, Graham H, White PC. Integrating human and ecosystem health through ecosystem services frameworks[J]. EcoHealth, 2015, 12(4): 660-671. DOI: 10.1007/s10393-015-1041-4.
    [53]
    Prescott SL, Logan AC. Planetary health: from the wellspring of holistic medicine to personal and public health imperative[J]. Explore, 2019, 15(2): 98-106. DOI: 10.1016/j.explore.2018.09.002.
    [54]
    Lane RD, Wager TD. The new field of Brain-Body Medicine: What have we learned and where are we headed?[J]. Neuroimage, 2009, 47(3): 1135-1140. DOI: 10.1016/j.neuroimage.2009.06.013.
    [55]
    Bateson G. Form, substance and difference[J]. Essential readings in biosemiotics, 1970, 501.
    [56]
    Gibbons SM. Defining microbiome health through a host lens[J]. mSystems, 2019, 4(3): e00155-00119. DOI: 10.1128/msystems.00155-19.
    [57]
    Guidolin D, Anderlini D, Marcoli M, et al. A new integrative theory of brain-body-ecosystem medicine: From the hippocratic holistic view of medicine to our modern society[J]. Int J Environ Res Public Health, 2019, 16(17): 3136. DOI: 10.3390/ijerph16173136.
    [58]
    Lovelock J. Gaia: the world as living organism[J]. New scientist (1971), 1986, 112(1539): 25-28.
    [59]
    Levy DJ, Heissel JA, Richeson JA, et al. Psychological and biological responses to race-based social stress as pathways to disparities in educational outcomes[J]. Am Psychol, 2016, 71(6): 455-473. DOI: 10.1037/a0040322.
    [60]
    Grace D, Lindahl J, Wanyoike F, et al. Poor livestock keepers: ecosystem-poverty-health interactions[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1725): 20160166. DOI: 10.1098/rstb.2016.0166.
    [61]
    Karger S, Bull C, Enticott J, et al. Options for improving low birthweight and prematurity birth outcomes of indigenous and culturally and linguistically diverse infants: a systematic review of the literature using the social-ecological model[J]. BMC Pregnancy Childb, 2022, 22(1): 3. DOI: 10.1186/s12884-021-04307-1.
    [62]
    Nonyel NP, Wisseh C, Riley AC, et al. Conceptualizing social ecological model in pharmacy to address racism as a social determinant of health[J]. Am J Pharm Educ, 2021, 85(9): 8584. DOI: 10.5688/ajpe8584.
    [63]
    Durkin A, Schenck C, Narayan Y, et al. Prevention of firearm injury through policy and law: The social ecological model[J]. J Law Med Ethics, 2020, 48(4_suppl): 191-197. DOI: 10.1177/1073110520979422.
    [64]
    Vasudevan S, Saha A, Tarver ME, et al. Digital biomarkers: Convergence of digital health technologies and biomarkers[J]. NPJ Digit Med, 2022, 5(1): 36. DOI: 10.1038/s41746-022-00583-z.
    [65]
    Manta C, Patrick-Lake B, Goldsack JC. Digital measures that matter to patients: a framework to guide the selection and development of digital measures of health[J]. Digit Biomark, 2020, 4(3): 69-77. DOI: 10.1159/000509725.
    [66]
    Rodarte C. Pharmaceutical perspective: how digital biomarkers and contextual data will enable therapeutic environments[J]. Digit Biomark, 2017, 1(1): 73-81. DOI: 10.1159/000479951.
    [67]
    Onnela JP, Rauch SL. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health[J]. Neuropsychopharmacology, 2016, 41(7): 1691-1696. DOI: 10.1038/npp.2016.7.
    [68]
    Coghlan S, D'alfonso S. Digital Phenotyping: an Epistemic and Methodological Analysis[J]. Philos Technol, 2021, 34(4): 1905-1928. DOI: 10.1007/s13347-021-00492-1.
    [69]
    Ji Q. The design of the lightweight smart home system and interaction experience of products for middle-aged and elderly users in smart cities[J]. Comput Intell Neurosci, 2022, 2022: 1279351. DOI: 10.1155/2022/1279351.
    [70]
    Mekni M, Haynes D. Smart Community Health: A Comprehensive Community Resource Recommendation Platform[J]. Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2020, 5: 614-624. DOI: 10.5220/0009118306140624.
    [71]
    Mcgowan AK, Kramer K, Teitelbaum JB. Healthy People: the role of law and policy in the nation's public health agenda[J]. J Law Med Ethics, 2019, 47(S2): 63-67. DOI: 10.1177/1073110519857320.
    [72]
    Song C, Wu X. Smart city+ IoT standardization application practice model and realization of key technologies[J]. Comput Intell Neurosci, 2022, 2022: 8070939. DOI: 10.1155/2022/8070939.
    [73]
    Lyu Y, Peng Y, Liu H, et al. Impact of Digital Economy on the Provision Efficiency for Public Health Services: Empirical Study of 31 Provinces in China[J]. Int J Environ Res Public Health, 2022, 19(10): 5978. DOI: 10.3390/ijerph19105978.
    [74]
    Jiang C, Chang H, Shahzad I. Digital Economy and Health: Does Green Technology Matter in BRICS Economies?[J]. Front Public Health, 2021, 9: 827915. DOI: 10.3389/fpubh.2021.827915.
    [75]
    Gajovic' S, Svalastog AL. When communicating health-related knowledge, beware of the black holes of the knowledge landscapes geography[J]. Croat Med J, 2016, 57(5): 504-509. DOI: 10.3325/cmj.2016.57.504.
    [76]
    Svalastog AL, Donev D, Kristoffersen NJ, et al. Concepts and definitions of health and health-related values in the knowledge landscapes of the digital society[J]. Croat Med J, 2017, 58(6): 431-435. DOI: 10.3325/cmj.2017.58.431.
    [77]
    Thomas TM, Pollard AJ. Vaccine communication in a digital society[J]. Nat Mater, 2020, 19(4): 476. DOI: 10.1038/s41563-020-0626-7.
    [78]
    Landers M, Dorsey R, Saria S. Digital endpoints: Definition, benefits, and current barriers in accelerating development and adoption[J]. Digit Biomark, 2021, 5(3): 216-223. DOI: 10.1159/000517885.
    [79]
    Arora S, Venkataraman V, Zhan A, et al. Detecting and monitoring the symptoms of Parkinson's disease using smartphones: A pilot study[J]. Parkinsonism Relat Disord, 2015, 21(6): 650-653. DOI: 10.1016/j.parkreldis.2015.02.026.
    [80]
    Artusi CA, Mishra M, Latimer P, et al. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases[J]. Parkinsonism Relat Disord, 2018, 46: S53-S56. DOI: 10.1016/j.parkreldis.2017.07.022.
    [81]
    Zhan A, Mohan S, Tarolli C, et al. Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score[J]. JAMA Neurol, 2018, 75(7): 876-880. DOI: 10.1001/jamaneurol.2018.0809.
    [82]
    Bradshaw MJ, Farrow S, Motl RW, et al. Wearable biosensors to monitor disability in multiple sclerosis[J]. Neurol Clin Pract, 2017, 7(4): 354-362. DOI: 10.1212/cpj.0000000000000382.
    [83]
    Voss C, Schwartz J, Daniels J, et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: a randomized clinical trial[J]. JAMA Pediatr, 2019, 173(5): 446-454. DOI: 10.1001/jamapediatrics.2019.0285.
    [84]
    Bosl WJ, Tager-Flusberg H, Nelson CA. EEG analytics for early detection of autism spectrum disorder: a data-driven approach[J]. Sci Rep, 2018, 8(1): 1-20. DOI: 10.1038/s41598-018-24318-x.
    [85]
    Haberkamp M, Moseley J, Athanasiou D, et al. European regulators' views on a wearable-derived performance measurement of ambulation for Duchenne muscular dystrophy regulatory trials[J]. Neuromuscul Disord, 2019, 29(7): 514-516. DOI: 10.1016/j.nmd.2019.06.003.
    [86]
    Redfield MM, Anstrom KJ, Levine JA, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction[J]. N Engl J Med, 2015, 373(24): 2314-2324. DOI: 10.1056/nejmoa1510774.
    [87]
    United States Food and Drug Administration FDA authorizes first fully interoperable continuous glucose monitoring system, streamlines review pathway for similar devices[EB/OL]. (2018-03-27)[2022-07-18]. https://www.fda.gov/news-events/press-announcements/fda-authorizes-first-fully-interoperable-continuous-glucose-monitoring-system-streamlines-review.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (452) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return