Advanced Search

CN 34-1304/RISSN 1674-3679

XU Xue-qin, PEI Lan-ying, WANG Jin-jin, LIU Xiao-hui, SUN Chun-yang, YAN Guo-li. Prediction of measles incidence rate based on the support vector machine model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2017, 21(5): 528-530. doi: 10.16462/j.cnki.zhjbkz.2017.05.023
Citation: XU Xue-qin, PEI Lan-ying, WANG Jin-jin, LIU Xiao-hui, SUN Chun-yang, YAN Guo-li. Prediction of measles incidence rate based on the support vector machine model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2017, 21(5): 528-530. doi: 10.16462/j.cnki.zhjbkz.2017.05.023

Prediction of measles incidence rate based on the support vector machine model

doi: 10.16462/j.cnki.zhjbkz.2017.05.023
  • Received Date: 2016-12-03
  • Rev Recd Date: 2017-02-28
  • Objective To establish a support vector machine model for prediction of measles incidence rate, in order to provide the reference for measles prevention and control decision. Methods The data of measles incidence rate in china from 1996 to 2015 were collected. The incidence rates of measles from 1996 to 2014 were training samples, and the incidence rate of 2015 was testing sample. The prediction model was established based on the support vector machine regression algorithm, and the incidence rates of measles from 2016 to 2018 were predicted by using this model. Results The actual incidence rates and predicted incidence rates of measles were highly consistent; the average relative error was 0.620 07%. The predicted incidence rates of measles in china from 2016 to 2018 were 3.23/100 000 and 3.13/100 000, 3.79/100 000, respectively. Conclusions It is feasible and effective to predict the incidence rate of measles by using the support vector machine regression model.
  • Relative Articles

  • Cited by

    Periodical cited type(7)

    1. 李锡辉,时圆圆,祝光湖. 基于机器学习和时间序列方法的传染病规模预测模型. 桂林电子科技大学学报. 2024(01): 87-92 .
    2. 倪茹玉,胡婉,张恒川,潘贵霞. ARIMA乘积季节模型与LSTM神经网络模型对我国麻疹发病数预测效果的比较. 现代预防医学. 2023(01): 177-182 .
    3. 杨美涛,王彦丁,李志强,吴迪,贡鑫然,王勇. ARIMA-SVM组合模型在肺结核发病趋势预测中的应用. 现代预防医学. 2023(11): 1921-1926 .
    4. 张帆,寻鲁宁,孙纪新,唐大镜,路笑颖,杨语嫣,崔泽. 基于ARIMA-SVM组合模型的道路交通伤害死亡率预测. 现代预防医学. 2021(10): 1742-1746 .
    5. 付之鸥,周扬,陈诚,郑洪伟,宋伟,李苑,陆伟,彭志行. 时间序列分析与机器学习方法在预测肺结核发病趋势中的应用. 中国卫生统计. 2020(02): 190-195 .
    6. 韩晓丽,张薇,崔旭东,马汉平,赵祥凯,刘妍琛,张晓宇,任晓卫. 支持向量回归联合气象和空气污染指标在细菌性痢疾预测中的应用. 中华疾病控制杂志. 2019(09): 1137-1142 . 本站查看
    7. 吴静. 探究糖尿病合并老年性阴道炎的发病几率. 饮食科学. 2018(24): 150 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (488) PDF downloads(20) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return