Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 23 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
LI Gang-gang, ZHOU Xiu-fang, BAI Ya-na, ZHOU Li, HAN Xiao-li, REN Xiao-wei. Application and comparison of residual autoregressive model and Holt's two-parameter exponential smoothing model in infant mortality prediction in some countries along the Belt and Road Initiative[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(1): 90-94, 100. doi: 10.16462/j.cnki.zhjbkz.2019.01.019
Citation: LI Gang-gang, ZHOU Xiu-fang, BAI Ya-na, ZHOU Li, HAN Xiao-li, REN Xiao-wei. Application and comparison of residual autoregressive model and Holt's two-parameter exponential smoothing model in infant mortality prediction in some countries along the Belt and Road Initiative[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(1): 90-94, 100. doi: 10.16462/j.cnki.zhjbkz.2019.01.019

Application and comparison of residual autoregressive model and Holt's two-parameter exponential smoothing model in infant mortality prediction in some countries along the Belt and Road Initiative

doi: 10.16462/j.cnki.zhjbkz.2019.01.019
Funds:

2015-RC-33 Science and Technology Bureau Newborn Birth Cohort Research Project, Lanzhou

2018ldbrzd008 Major project of the Belt and Road, Lanzhou University

More Information
  • Corresponding author: REN Xiao-wei, E-mail: renxw@lzu.edu.cn
  • Received Date: 2018-07-05
  • Rev Recd Date: 2018-10-06
  • Publish Date: 2019-01-10
  •   Objective  To explore the application of residual autoregressive model and Holt's two-parameter exponential model in the prediction of infant mortality rate in some countries along the "Belt and Road" (China-Indo-China Peninsula Economic Corridor).  Methods  The time series data of infant mortality rate in Vietnam, Laos, Cambodia, Myanmar, Thailand, Singapore, Malaysia, and China for 1978-2013 were used as training set to fit residual autoregressive model and Holt's two-parameter exponential model. The 2014-2016 data was used as the validation set to compare the performance of model prediction.  Results  The akaike information criterion (AIC) value of the residual autoregressive model was superior to Holt's two-parameter exponential model. Both prediction models showed high accuracy, and most evaluation indicators (absolute error and relative error) of residual autoregressive prediction model were smaller than Holt's two-parameter exponential model. The residual autoregressive models of Laos, Myanmar and Cambodia were better than the Holt's two-parameter exponential model for the infant mortality rate(IMR) prediction in different years.  Conclusions  The residual autoregressive model and Holt's two-parameter exponential model performed well in infant mortality rate prediction in some countries along the China-Indo-china Peninsula Economic Corridor. The residual autoregressive model has better fitting effect. The residual autoregressive model for infant mortality prediction is superior to the Holt two-parameter exponential model in most countries in most years.
  • loading
  • [1]
    谭晓东, 陈叙宇. "一带一路"的公共卫生挑战与准备[J]. 公共卫生与预防医学, 2017, 28(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-FBYF201704001.htm

    Tan XD, Chen XY. "One Belt and One Road" Public Health Challenge and Preparation[J]. J Pub Health Prev Med, 2017, 28(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-FBYF201704001.htm
    [2]
    刘卫东. "一带一路"战略的科学内涵与科学问题[J]. 地理科学进展, 2015, 34(5): 538-544. DOI: 10.11820/dlkxjz.2015.05.001.

    Liu WD. Scientific understanding of the Belt and Road Initiative of China and related research themes[J]. Prog Geo, 2015, 34(5): 538-544. DOI:10.11820/dlkxjz. 2015.05.001.
    [3]
    BB, GC-B, AM, et al. Epidemiology of burns in hospitalized children from the western pomerania region in poland in 1985-2010[J]. Progress in Health Sciences, 2017, 7(1): 99-106. DOI: 10.5604/01.3001.0010.1821.
    [4]
    Frey RS, Cui WJ. Infant mortality in the world-system[J]. Journal of Globalization Studies, 2016, 7(1): 47-55. http://www.researchgate.net/publication/316250726_INFANT_MORTALITY_IN_THE_WORLD-SYSTEM/download
    [5]
    Ramalho AA, Andrade AM, Martins FA, et al. Infant mortality trend in the city of rio branco, ac, 1999 to 2015[J]. Rev Saude Publica, 2018, 52: 33. DOI: 10.11606/S1518-8787.2018052000280.
    [6]
    武新乾, 张刚. 具有线性趋势的残差自回归模型的估计方法[J]. 统计与决策, 2016, (11): 74-77. DOI: 10.13546/j.cnki.tjyjc.2016.11.021.

    Wu XQ, Zhang G. Estimation method of residual autoregressive model with linear trend[J]. Statistics and Decision, 2016, (11): 74-77. DOI: 10.13546/j.cnki.tjyjc.2016.11.021.
    [7]
    World Health Organization. Infant mortality rate (probability of dying between birth and age 1 per 1000 live births). [DB/OL]. (2018-03-25)[2018-06-28]. http://apps.who.int/gho/data/?theme=main.
    [8]
    高惠璇. SAS系统SAS/ETS软件使用手册[M]. 北京: 中国统计出版社, 1998.

    Gao HX. SAS System SAS/ETS Software Manual[M]. Beijing: China Statistics Press, 1998.
    [9]
    DerSarkissian M, Thompson CA, Arah OA. Time series analysis of maternal mortality in africa from 1990 to 2005[J]. J Epidemiol Community Health, 2013, 67(12): 992-998. DOI: 10.1136/jech-2013-202565.
    [10]
    刘松, 李晓妹, 刘健, 等. Auto-regressive模型在全国婴儿死亡率拟合中的应用[J]. 中国卫生统计, 2011, 28(4): 366-368. doi: 10.3969/j.issn.1002-3674.2011.04.004

    Liu S, Li XM, Liu J, et al. Application of Auto-regressive Model in the National Infant Mortality Rate[J]. Chin J Health Statis, 2011, 28(4): 366-368. doi: 10.3969/j.issn.1002-3674.2011.04.004
    [11]
    王燕. 应用时间序列分析[M]. 第3版. 北京: 中国人民大学出版社, 2012: 160-165.

    Wang Y. Application Time Series Analysis[M]. 3rd Ed. Beijing: Renmin University of China Press, 2012: 160-165.
    [12]
    王永斌, 柴峰, 李向文, 等. Arima模型与残差自回归模型在手足口病发病预测中的应用[J]. 中华疾病控制杂志, 2016, 20(3): 303-306. DOI:10.16462/j.cnki.zhjbkz.2016.03.022.

    Wang YB, Chai F, Li XW, et al. Application of ARIMA model and auto-regressive model in prediction on incidence of hand-foot-mouth disease[J]. Chin J Dis Control Prev, 2016, 20(3): 303-306. DOI: 10.16462/J.cnki.zhjbkz.2016.03.022.
    [13]
    任正洪, 安琳, 张伶俐. 应用残差自回归模型预测2020年我国妇幼卫生健康指标[J]. 北京大学学报(医学版), 2010, 42(2): 221-224. DOI:10.3969/j.issn.1671-167X.2010.02.023.

    Ren ZH, An L, Zhang LL. Forecast of the indicators on maternal and child health of China in 2020 using auto-regressive model[J]. J Peking Univ Health Sci, 2010, 42(2): 221-224. DOI: 10.3969/j.issn.1671-167X.2010.02.023.issn.1671-167X.2010.02.023.
    [14]
    尚文利, 张立婷, 李世超, 等. 基于Holt指数平滑模型的油井产量动态预测[J]. 自动化与仪表, 2018, 33(4): 68-70. DOI: 10.19557/j.cnki.1001-9944.2018.04.016.

    Shang WL, Zhang LT, Li SC, et al. Oil Well Production Dynamic Prediction Based on the Holt Exponential Smoothing Model[J]. Automation and Instrumentation, 2018, 33(4): 68-70. DOI: 10.19557/j.cnki.1001-9944.2018.04.016.
    [15]
    Krishna VR. Infant mortality trends and human resources in india: A review and evaluation[J]. Review of HRM, 2016, 4(2): 5-10.
    [16]
    Juang WC, Huang SJ, Huang FD, et al. Application of time series analysis in modelling and forecasting emergency department visits in a medical centre in southern taiwan[J]. BMJ Open, 2017, 7(11): e018628. DOI: 10.1136/bmjopen-2017-018628.
    [17]
    罗波艳, 梁芳, 赵丽婷, 等. 兰州市2010-2014年5岁以下儿童死亡分析[J]. 中华疾病控制杂志, 2016, 20(7): 683-686. DOI: 10.16462/j.cnki.zhjbkz.2016.07.010.

    Luo BY, Liang F, Zhao LT, et al. Mortality analysis on children under 5 years old in Lanzhou City from 2010 to 2014[J]. Chin J Dis Control Prev, 2016, 20(7): 683-686. DOI: 10.16462/j.cnki.zhjbkz.2016.07.010.
    [18]
    马翠荣, 杨婕, 余小金. 江苏省2006-2014年城乡未成年人跌倒病例的时间序列预测分析[J]. 中华疾病控制杂志, 2018, 22(2): 122-125. DOI: 10.16462/j.cnki.zhjbkz.2018.02.005.

    Ma CR, Yang J, Yu XJ. The fall injury cases of urban and rural areas for minors in Jiangsu Province: a time-series prediction and analysis, 2006-2014[J]. Chin J Dis Control Prev, 2018, 22(2): 122-125. DOI: 10.16462/j.cnki.zhjbkz.2018.02.005.
    [19]
    Lin YL, Chen M, Chen GW, et al. Application of an autoregressive integrated moving average model for predicting injury mortality in xiamen, China[J]. BMJ Open, 2015, 5(12): e008491. DOI: 10.1136/bmjopen-2015008491.
    [20]
    左梦玲, 董柏青, 雷利志, 等. 广西孕产妇死亡率变化趋势分析及预测研究[J]. 中华疾病控制杂志, 2017, 21(9): 953-955. DOI: 10.16462/j.cnki.zhjbkz.2017.09.023.

    Zuo ML, Dong BQ, Lei LZ, et al. Trend analysis and prediction of maternal mortality rate in Guangxi[J]. Chin J Dis Control Prev, 2017, 21(9): 953-955. DOI: 10.16462/j.cnki.zhjbkz.2017.09.023.
    [21]
    Granger CWJ, Joyeux R. An Introduction to Long Menory Time Series Models and Fractional Differencing[J]. J Time Ser Anal, 1980, 1(1): 15-29. DOI: 10.1111/j.1467-9892.1980.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views (512) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return