Citation: | PAN Hai-feng, ZHAO Chan-na, YE Dong-qing. Research progress in infodemiology study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(5): 497-500. doi: 10.16462/j.cnki.zhjbkz.2019.05.001 |
[1] |
Jacobs W, Amuta AO, Jeon KC. Health information seeking in the digital age: an analysis of health information seeking behavior among US adults[J]. Cogent Soc Sci, 2017, 3(1): 1302785. DOI: 10.1080/23311886.2017.1302785.
|
[2] |
Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic[J]. PLoS One, 2011, 6(5): e19467. DOI: 10.1371/journal.pone.0019467.
|
[3] |
Wang FY, Zeng D, Carley KM, et al. Social computing: from social informatics to social intelligence[J]. IEEE Intell Syst, 2007, 22(2): 79-83. DOI: 10.1109/Mis.2007.41.
|
[4] |
Eysenbach G. Infodemiology: tracking flu-related searches on the web for syndromic surveillance[J]. AMIA Annu Symp Proc, 2006: 244-248. http://www.tandfonline.com/servlet/linkout?suffix=cit0014&dbid=8&doi=10.1080%2F21645515.2017.1420448&key=17238340
|
[5] |
Aslam AA, Tsou MH, Spitzberg BH, et al. The reliability of tweets as a supplementary method of seasonal influenza surveillance[J]. J Med Internet Res, 2014, 16(11): e250. DOI: 10.2196/jmir.3532.
|
[6] |
Yang YT, Horneffer M, DiLisio N. Mining social media and web searches for disease detection[J]. J Public Health Res. 2013, 2(1): 17-21. DOI: 10.4081/jphr.2013.e4.
|
[7] |
Davison K. The quality of dietary information on the world wide web[J]. Clin Perform Qual Health Care. 1997, 5(2): 64-66. http://www.bmj.com/lookup/external-ref?access_num=10167213&link_type=MED&atom=%2Fbmj%2F321%2F7275%2F1511.atom
|
[8] |
Davison K, Guan SC. The quality of dietary information on the world wide web[J]. Journal of the Canadian Dietetic Association, 1996, 57(4): 137-141.
|
[9] |
Impicciatore P, Pandolfini C, Casella N, et al. Reliability of health information for the public on the world wide web: systematic survey of advice on managing fever in children at home[J], BMJ. 1997, 314(7098): 1875-1879. DOI: 10.1136/bmj.314.7098.1875.
|
[10] |
Eysenbach G, Powell J, Kuss O, et al. Empirical studies assessing the quality of health information for consumers on the world wide web: a systematic review[J]. JAMA, 2002, 287(20): 2691-2700. DOI: 10.1001/jama.287.20.2691.
|
[11] |
Eysenbach G. Infodemiology: The epidemiology of (mis)information[J]. Am J Med, 2002, 113(9): 763-765. DOI: 10.1016/S0002934302014730.
|
[12] |
Eysenbach G. Infodemiology and infoveillance tracking online health information and cyberbehavior for public health[J]. Am J Prev Med, 2011, 40(Suppl2): S154-158. DOI: 10.1016/j.amepre.2011.02.006.
|
[13] |
Zeraatkar K, Ahmadi M. Trends of infodemiology studies: a scoping review[J]. Health Info Libr J. 2018, 35(2): 91-120. DOI: 10.1111/hir.12216.
|
[14] |
Alicino C, Bragazzi NL, Faccio V, et al. Assessing Ebola-related web search behaviour: insights and implications from an analytical study of google trends-based query volumes[J]. Infect Dis Poverty. 2015, 4: 54. DOI: 10.1186/s40249-015-0090-9.
|
[15] |
Ginsberg J, Mohebbi MH, Patel RS, et al. Detecting influenza epidemics using search engine query data[J]. Nature. 2009, 457(7232): 1012-1014. DOI: 10.1038/nature07634.
|
[16] |
Siri A, Khabbache H, Al-Jafar A, et al. Infodemiological data of high-school drop-out related web searches in Canada correlating with real-world statistical data in the period 2004-2012[J]. Data Brief. 2016, 9: 679-684. DOI: 10.1016/j.dib.2016.09.032.
|
[17] |
Bragazzi NL, Dini G, Toletone A, et al. Leveraging big data for exploring occupational diseases-related interest at the level of scientific community, media coverage and novel data streams: the example of silicosis as a pilot study[J]. PLoS One. 2016, 11(11): e0166051. DOI: 10.1371/journal.pone.0166051.
|
[18] |
Bragazzi NL, Barberis I, Rosselli R, et al. How often people google for vaccination: qualitative and quantitative insights from a systematic search of the web-based activities using Google Trends[J]. Hum Vaccin Immunother. 2017, 13(2): 464-469. DOI: 10.1080/21645515.2017.1264742.
|
[19] |
Kardes S. Seasonal variation in the internet searches for gout: an ecological study[J]. Clin Rheumatol, 2019, 38(2): 769-775. DOI: 10.1007/s10067-018-4345-2.
|
[20] |
Martinez-Arroyo G, Ramos-Gomez S, Rojero-Gil EK, et al. Potential uses of an infodemiology approach for health-care services for rheumatology[J]. Clin Rheumatol, 2019, 38(3): 869-876. DOI: 10.1007/s10067-018-4364-z.
|
[21] |
Wilson K, Brownstein JS. Early detection of disease outbreaks using the Internet[J]. CMAJ. 2009, 180(8): 829-831. DOI: 10.1503/cmaj.090215.
|
[22] |
Ireland ME, Schwartz HA, Chen Q, et al. Future-oriented tweets predict lower county-level HIV prevalence in the United States[J]. Health Psychol, 2015, 34S: 1252-1260. DOI: 10.1037/hea0000279.
|
[23] |
Popkin BM. What can public health nutritionists do to curb the epidemic of nutrition-related noncommunicable disease?[J]. Nutr Rev, 2009, 67(Suppl1): S79-82. DOI: 10.1111/j.1753-4887.2009.00165.x.
|
[24] |
Eichstaedt JC, Schwartz HA, Kern ML, et al. Psychological language on twitter predicts county-level heart disease mortality[J]. Psychol Sci. 2015, 26(2): 159-169. DOI: 10.1177/0956797614557867.
|
[25] |
Brown NJL, Coyne JC. Does Twitter language reliably predict heart disease? a commentary on Eichstaedt et al. (2015a)[J]. PeerJ. 2018, 6: e5656. DOI: 10.7717/peerj.5656.
|
[26] |
Patel JC, Khurana P, Sharma YK, et al. Chronic lifestyle diseases display seasonal sensitive comorbid trend in human population evidence from google trends[J]. PLoS One. 2018, 13(12): e0207359. DOI: 10.1371/journal.pone.0207359.
|
[27] |
Jellison SS, Bibens M, Checketts J, et al. Using google trends to assess global public interest in osteoarthritis[J]. Rheumatol Int, 2018, 38(11): 2133-2136. DOI: 10.1007/s00296-018-4158-2.
|