Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 23 Issue 5
May  2019
Turn off MathJax
Article Contents
PAN Hai-feng, ZHAO Chan-na, YE Dong-qing. Research progress in infodemiology study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(5): 497-500. doi: 10.16462/j.cnki.zhjbkz.2019.05.001
Citation: PAN Hai-feng, ZHAO Chan-na, YE Dong-qing. Research progress in infodemiology study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(5): 497-500. doi: 10.16462/j.cnki.zhjbkz.2019.05.001

Research progress in infodemiology study

doi: 10.16462/j.cnki.zhjbkz.2019.05.001
Funds:

National Natural Science Foundations of China 81872693

National Natural Science Foundations of China 81872687

More Information
  • Corresponding author: YE Dong-qing, E-mail: ydq@ahmu.edu.cn
  • Received Date: 2019-03-15
  • Publish Date: 2019-05-10
  • Web technologies, such as search engines and social media, have provided an opportunity for the management of user generated data in real time. Through the analysis of these web-based data, people can understand the health issues of concern, which can be used for the prediction of the epidemic of infectious diseases and the monitoring of chronic non-communicable diseases. The emergence of Infodemiology, also known as Information Epidemiology, aims to study the occurrence, distribution and influencing factors of health information from electronic medium, so as to raise awareness of disease and health problems among people, and provide the basis for the formulation of disease prevention and control strategies. This review summarizes the research progress in Infodemiology.
  • loading
  • [1]
    Jacobs W, Amuta AO, Jeon KC. Health information seeking in the digital age: an analysis of health information seeking behavior among US adults[J]. Cogent Soc Sci, 2017, 3(1): 1302785. DOI: 10.1080/23311886.2017.1302785.
    [2]
    Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic[J]. PLoS One, 2011, 6(5): e19467. DOI: 10.1371/journal.pone.0019467.
    [3]
    Wang FY, Zeng D, Carley KM, et al. Social computing: from social informatics to social intelligence[J]. IEEE Intell Syst, 2007, 22(2): 79-83. DOI: 10.1109/Mis.2007.41.
    [4]
    Eysenbach G. Infodemiology: tracking flu-related searches on the web for syndromic surveillance[J]. AMIA Annu Symp Proc, 2006: 244-248. http://www.tandfonline.com/servlet/linkout?suffix=cit0014&dbid=8&doi=10.1080%2F21645515.2017.1420448&key=17238340
    [5]
    Aslam AA, Tsou MH, Spitzberg BH, et al. The reliability of tweets as a supplementary method of seasonal influenza surveillance[J]. J Med Internet Res, 2014, 16(11): e250. DOI: 10.2196/jmir.3532.
    [6]
    Yang YT, Horneffer M, DiLisio N. Mining social media and web searches for disease detection[J]. J Public Health Res. 2013, 2(1): 17-21. DOI: 10.4081/jphr.2013.e4.
    [7]
    Davison K. The quality of dietary information on the world wide web[J]. Clin Perform Qual Health Care. 1997, 5(2): 64-66. http://www.bmj.com/lookup/external-ref?access_num=10167213&link_type=MED&atom=%2Fbmj%2F321%2F7275%2F1511.atom
    [8]
    Davison K, Guan SC. The quality of dietary information on the world wide web[J]. Journal of the Canadian Dietetic Association, 1996, 57(4): 137-141.
    [9]
    Impicciatore P, Pandolfini C, Casella N, et al. Reliability of health information for the public on the world wide web: systematic survey of advice on managing fever in children at home[J], BMJ. 1997, 314(7098): 1875-1879. DOI: 10.1136/bmj.314.7098.1875.
    [10]
    Eysenbach G, Powell J, Kuss O, et al. Empirical studies assessing the quality of health information for consumers on the world wide web: a systematic review[J]. JAMA, 2002, 287(20): 2691-2700. DOI: 10.1001/jama.287.20.2691.
    [11]
    Eysenbach G. Infodemiology: The epidemiology of (mis)information[J]. Am J Med, 2002, 113(9): 763-765. DOI: 10.1016/S0002934302014730.
    [12]
    Eysenbach G. Infodemiology and infoveillance tracking online health information and cyberbehavior for public health[J]. Am J Prev Med, 2011, 40(Suppl2): S154-158. DOI: 10.1016/j.amepre.2011.02.006.
    [13]
    Zeraatkar K, Ahmadi M. Trends of infodemiology studies: a scoping review[J]. Health Info Libr J. 2018, 35(2): 91-120. DOI: 10.1111/hir.12216.
    [14]
    Alicino C, Bragazzi NL, Faccio V, et al. Assessing Ebola-related web search behaviour: insights and implications from an analytical study of google trends-based query volumes[J]. Infect Dis Poverty. 2015, 4: 54. DOI: 10.1186/s40249-015-0090-9.
    [15]
    Ginsberg J, Mohebbi MH, Patel RS, et al. Detecting influenza epidemics using search engine query data[J]. Nature. 2009, 457(7232): 1012-1014. DOI: 10.1038/nature07634.
    [16]
    Siri A, Khabbache H, Al-Jafar A, et al. Infodemiological data of high-school drop-out related web searches in Canada correlating with real-world statistical data in the period 2004-2012[J]. Data Brief. 2016, 9: 679-684. DOI: 10.1016/j.dib.2016.09.032.
    [17]
    Bragazzi NL, Dini G, Toletone A, et al. Leveraging big data for exploring occupational diseases-related interest at the level of scientific community, media coverage and novel data streams: the example of silicosis as a pilot study[J]. PLoS One. 2016, 11(11): e0166051. DOI: 10.1371/journal.pone.0166051.
    [18]
    Bragazzi NL, Barberis I, Rosselli R, et al. How often people google for vaccination: qualitative and quantitative insights from a systematic search of the web-based activities using Google Trends[J]. Hum Vaccin Immunother. 2017, 13(2): 464-469. DOI: 10.1080/21645515.2017.1264742.
    [19]
    Kardes S. Seasonal variation in the internet searches for gout: an ecological study[J]. Clin Rheumatol, 2019, 38(2): 769-775. DOI: 10.1007/s10067-018-4345-2.
    [20]
    Martinez-Arroyo G, Ramos-Gomez S, Rojero-Gil EK, et al. Potential uses of an infodemiology approach for health-care services for rheumatology[J]. Clin Rheumatol, 2019, 38(3): 869-876. DOI: 10.1007/s10067-018-4364-z.
    [21]
    Wilson K, Brownstein JS. Early detection of disease outbreaks using the Internet[J]. CMAJ. 2009, 180(8): 829-831. DOI: 10.1503/cmaj.090215.
    [22]
    Ireland ME, Schwartz HA, Chen Q, et al. Future-oriented tweets predict lower county-level HIV prevalence in the United States[J]. Health Psychol, 2015, 34S: 1252-1260. DOI: 10.1037/hea0000279.
    [23]
    Popkin BM. What can public health nutritionists do to curb the epidemic of nutrition-related noncommunicable disease?[J]. Nutr Rev, 2009, 67(Suppl1): S79-82. DOI: 10.1111/j.1753-4887.2009.00165.x.
    [24]
    Eichstaedt JC, Schwartz HA, Kern ML, et al. Psychological language on twitter predicts county-level heart disease mortality[J]. Psychol Sci. 2015, 26(2): 159-169. DOI: 10.1177/0956797614557867.
    [25]
    Brown NJL, Coyne JC. Does Twitter language reliably predict heart disease? a commentary on Eichstaedt et al. (2015a)[J]. PeerJ. 2018, 6: e5656. DOI: 10.7717/peerj.5656.
    [26]
    Patel JC, Khurana P, Sharma YK, et al. Chronic lifestyle diseases display seasonal sensitive comorbid trend in human population evidence from google trends[J]. PLoS One. 2018, 13(12): e0207359. DOI: 10.1371/journal.pone.0207359.
    [27]
    Jellison SS, Bibens M, Checketts J, et al. Using google trends to assess global public interest in osteoarthritis[J]. Rheumatol Int, 2018, 38(11): 2133-2136. DOI: 10.1007/s00296-018-4158-2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (1235) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return