Citation: | OUYANG Ping, LI Xiao-xi, LENG Fen, LAI Xiao-ying, ZHANG Hui-ming, YAN Chuan-jie, WANG Chu-qiong, BAI Yu, XING Zhi-qiang, LIU Xu-tao, MIAO Miao, DENG Kan, LI Wen-yuan. Application of machine learning algorithm in diabetes risk prediction of physical examination population[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(7): 849-853, 868. doi: 10.16462/j.cnki.zhjbkz.2021.07.020 |
[1] |
Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138: 271-281. DOI: 10.1016/j.diabres.2018.02.023.
|
[2] |
Wei Y, Wang J, Han X, et al. Metabolically healthy obesity increased diabetes incidence in a middle‐aged and elderly Chinese population[J]. Diabetes Metab Res Rev, 2019, 36(1). DOI: 10.1002/dmrr.3202.
|
[3] |
Peer N, Balakrishna Y, Durao S. Screening for type 2 diabetes mellitus[J]. Cochrane Database Syst Rev, 2020, (5): 1465-1858. DOI: 10.1002/14651858.cd005266.
|
[4] |
Ekoe J, Goldenberg R, Katz P. Screening for diabetes in adults[J]. Can J Diabetes, 2018, 42: S16-S19. DOI: 10.1016/j.jcjd.2017.10.004.
|
[5] |
覃伟, 高敏, 沈莹, 等. 基于机器学习算法的2型糖尿病患者3个月血糖预测[J]. 中华疾病控制杂志, 2019, 23(11): 1313-1317. DOI: 10.16462/j.cnki.zhjbkz.2019.11.003.
Qin W, Gao M, Shen Y, et al. Prediction of 3-mouth glycemic control in type 2 diabetes mellitus based on machine learning algorithm[J]. Chin J Dis Control Prev, 2019, 23(11): 1313-1317. DOI: 10.16462/j.cnki.zhjbkz.2019.11.003.
|
[6] |
Mahboob AT, Iqbal MA, Ali Y, et al. A model for early prediction of diabetes[J]. Inform Med Unlocked, 2019, 16: 100204. DOI: 10.1016/j.imu.2019.100204.
|
[7] |
Dinh A, Miertschin S, Young A, et al. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning[J]. BMC Med Inform Decis Mak, 2019, 19(1): 211. DOI: s12911-019-0918-5.
|
[8] |
Mamuda M, Sathasivam S. Predicting the survival of diabetes using neural network[J]. AIP Conf Proc, 2017, 1870(1). DOI: 10.1063/1.4995878.
|
[9] |
吴文军, 徐蕾, 黄丽梅, 等. 2016-2017年上海市社区糖尿病高危人群筛查结果分析[J]. 中华疾病控制杂志, 2019, 23(7): 802-806. DOI: 10.16462/j.cnki.zhjbkz.2019.07.012.
Wu WJ, Xu L, Huang LM, et al. Analysis of diabetes screening in high-risk population in different communities in Shanghai from 2016 to 2017[J]. Chin J Dis Control Prev, 2019, 23(7): 802-806. DOI: 10.16462/j.cnki.zhjbkz.2019.07.012.
|
[10] |
Lynam AL, Dennis JM, Owen KR, et al. Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults[J]. Diagn Progn Res, 2020, 4(1): 6. DOI: 10.1186/s41512-020-00075-2.
|
[11] |
Ke G, Meng Q, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree[J]. Adv Neural Inf Process Syst, 2017: 3146-3154. doi: 10.5555/3294996.3295074
|
[12] |
中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 2型糖尿病基层诊疗指南(实践版·2019)[J]. 中华全科医师杂志, 2019, 18(9): 810-818. DOI:10.3760/cma.j.issn.1671-7368. 2019.09.003.
Chinese Medical Association, Chinese Medical Journals Publishing House, Chinese Society of General Practice, et al. Guideline for primary care of type 2 diabetes: practice version(2019)[J]. Chin J Gen Pract, 2019, 18(9): 810-818. DOI: 10.3760/cma.j.issn.1671-7368.2019.09.003.
|
[13] |
Shuai, Y, Zheng Y, Huang H, et al. Hybrid Software Obsolescence Evaluation Model Based on PCA-SVM-GridSearchCV[C] // 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS) IEEE. Beijing: IEEE, 2018: 449-453.
|
[14] |
Mugeni R, Aduwo JY, Briker SM, et al. A Review of diabetes prediction equations in African descent populations[J]. Front Endocrinol (Lausanne), 2019, 10: 663. DOI: 10.3389/fendo.2019.00663.
|
[15] |
Xie Z, Nikolayeva O, Luo J, et al. Building risk prediction models for type 2 diabetes using machine learning techniques[J]. Prev Chronic Dis, 2019, 16: E130. DOI: 10.5888/pcd16.190109.
|
[16] |
Chen X, Wu Z, Chen Y, et al. Risk score model of type 2 diabetes prediction for rural Chinese adults: the rural deqing cohort study[J]. J Endocrinol Invest, 2017, 40(10): 1115-1123. DOI: 10.1007/s40618-017-0680-4.
|
[17] |
Wang K, Gong M, Xie S, et al. Nomogram prediction for the 3-year risk of type 2 diabetes in healthy mainland China residents[J]. EPMA J, 2019, 10(3): 227-237. DOI: 10.1007/s13167-019-00181-2.
|
[18] |
Yatsuya H, Li Y, Hirakawa Y, et al. A point system for predicting 10-year risk of developing type 2 diabetes mellitus in Japanese men: aichi workers' cohort study[J]. J Epidemiol, 2018, 28(8): 347-352. DOI: 10.2188/jea.je20170048.
|
[19] |
Zhang Y, Zhou X, Wang Q, et al. Quality of reporting of multivariable logistic regression models in Chinese clinical medical journals[J]. Medicine (Baltimore), 2017, 96(21): e6972. DOI:10.1097/md.000000000 0006972.
|
[20] |
Maddatu J, Anderson-Baucum E, Evans-Molina C. Smoking and the risk of type 2 diabetes[J]. Transl Res, 2017, 184: 101-107. DOI: 10.1016/j.trsl.2017.02.004.
|
[21] |
Holst C, Becker U, Jørgensen ME, et al. Alcohol drinking patterns and risk of diabetes: a cohort study of 70, 551 men and women from the general Danish population[J]. Diabetologia, 2017, 60(10): 1941-1950. DOI: 10.1007/s00125-017-4359-3.
|
[22] |
Sun D, Zhou T, Heianza Y, et al. Type 2 diabetes and hypertension : a study on bidirectional causality[J]. Circ Res, 2019, 124(6): 930-937. DOI: 10.1161/circresaha.118.314487.
|
[23] |
Schnurr TM, Jakupović H, Carrasquilla GD, et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: a case-cohort study[J]. Diabetologia, 2020, 63(7): 1324-1332. DOI: 10.1007/s00125-020-05140-5.
|
[24] |
Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes[J]. BMC Med, 2017, 15(1). DOI: 10.1186/s12916-017-0901-x.
|