Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 26 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
XUE Fu-zhong. The research design and statistical analysis strategy of eco-epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(10): 1152-1160. doi: 10.16462/j.cnki.zhjbkz.2022.10.008
Citation: XUE Fu-zhong. The research design and statistical analysis strategy of eco-epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(10): 1152-1160. doi: 10.16462/j.cnki.zhjbkz.2022.10.008

The research design and statistical analysis strategy of eco-epidemiology

doi: 10.16462/j.cnki.zhjbkz.2022.10.008
Funds:

National Key Research and Development Program of China 2020YFC2003500

More Information
  • Corresponding author: XUE Fu-zhong, E-mail: xuefzh@sdu.edu.cn
  • Received Date: 2022-07-22
  • Rev Recd Date: 2022-09-02
  • Publish Date: 2022-10-10
  • The theoretical paradigm of big data eco-epidemiology illustrates a more comprehensive perspective of eco-epidemiology, acknowledging and capturing the complex network characteristics of hierarchical mosaic and interactive games of many health determinants in the real and virtual worlds. Under the complex background of mosaic layered interaction and network-game, the traditional epidemiological sampling methods based on independent random assumptions, traditional analytical and experimental epidemiological design strategies and statistical analysis methods, all face huge challenges. Furthermore, they could be replaced by system dynamics models, network analysis and network dynamics models, multi-agent system models, and causal inference hypergraph models that need to be developed in the future. Thus, a new theoretical paradigm, new design strategy and new statistical method constitute a theoretical method system of big data eco-epidemiology.
  • loading
  • [1]
    薛付忠. 大数据生态流行病学理论模型[J]. 中华疾病控制杂志, 2022, 26(10): 1124-1128. DOI: 10.16462/j.cnki.zhjbkz.2022.10.003.

    Xue FZ. The theoretical model of big data eco-epidemiology[J]. Chin J Dis Control Prev, 2022, 26(10): 1124-1128. DOI: 10.16462/j.cnki.zhjbkz.2022.10.003.
    [2]
    Epstein JM. Generative social science: studies in agent-based computational modeling[J]. Journal of Ecological Anthropology, 2007, 11: 76.
    [3]
    Sterman J. System dynamics: systems thinking and modeling for a complex world[J]. 2002.
    [4]
    Imai K, Keele L, Tingley D. A general approach to causal mediation analysis[J]. Psychol Methods, 2010, 15(4): 309. DOI: 10.1037/a0020761.
    [5]
    Resnicow K, Page SE. Embracing chaos and complexity: a quantum change for public health[J]. Am J Public Health, 2008, 98(8): 1382-1389. DOI: 10.2105/ajph.2007.129460.
    [6]
    Mitchell M. Complexity: a guided tour[M]. Oxford university press, 2009: 253-255.
    [7]
    Meehl PE. Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology[J]. 1978, 48: 806-834. DOI: 10.1037/0022-066X.46.4.806.
    [8]
    Luke DA, Stamatakis KA. Systems science methods in public health: dynamics, networks, and agents[J]. Annu Rev Public Health, 2012, 33: 357-376. DOI: 10.1146/annurev-publhealth-031210-101222.
    [9]
    Homer JB, Hirsch GB. System dynamics modeling for public health: background and opportunities[J]. Am J Public Health, 2006, 96(3): 452-458. DOI: 10.2105/ajph.2005.062059.
    [10]
    Wang XS, Wu J, Yang Y. Richards model revisited: validation by and application to infection dynamics[J]. J Theor Biol, 2012, 313: 12-19. DOI: 10.1016/j.jtbi.2012.07.024.
    [11]
    Tseng P, Yun S. A coordinate gradient descent method for nonsmooth separable minimization[J]. Mathematical Programming, 2009, 117(1): 387-423. DOI: 10.1007/s10107-007-0170-0.
    [12]
    Luke DA, Harris JK. Network analysis in public health: history, methods, and applications[J]. Annu Rev Public Health, 2007, 28: 69-93. DOI: 10.1146/annurev.publhealth.28.021406.144132.
    [13]
    Keeling MJ, Eames KT. Networks and epidemic models[J]. Journal of the royal society interface, 2005, 2(4): 295-307. DOI: 10.1098/rsif.2005.0051.
    [14]
    Fowler JH, Christakis NA. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study[J]. BMJ, 2008, 337: a2338. DOI: 10.1136/bmj.a2338.
    [15]
    Marcus SE, Leischow SJ, Mabry PL, et al. Lessons learned from the application of systems science to tobacco control at the National Cancer Institute[J]. Am J Public Health, 2010, 100(7): 1163-1165. DOI: 10.2105/ajph.2010.198721.
    [16]
    Best A. Greater than the sum: systems thinking in tobacco control[M]. National Cancer Institute, US Department of Health and Human Services, Public Health Service, National Institutes of Health, 2007: 118-125.
    [17]
    Manoj BS, Chakraborty A, Singh R. Complex networks: a networking and signal processing perspective[M]. Prentice Hall, 2018: 59-62.
    [18]
    Majdandzic A, Podobnik B, Buldyrev SV, et al. Spontaneous recovery in dynamical networks[J]. Nature Physics, 2014, 10(1): 34-38. DOI: 10.1038/nphys2819.
    [19]
    Nagler J, Levina A, Timme M. Impact of single links in competitive percolation[J]. Nature Physics, 2011, 7(3): 265-270. DOI: 10.1038/nphys1860.
    [20]
    Albert R, Barabási AL. Statistical mechanics of complex networks[J]. Reviews of modern physics, 2002, 74(1): 47. DOI: 10.1103/revmodphys.74.47.
    [21]
    Yang D, Jin Y, He X, et al. Inferring multilayer interactome networks shaping phenotypic plasticity and evolution[J]. Nat Commun, 2021, 12(1): 1-17. DOI: 10.1038/s41467-021-25086-5.
    [22]
    Sang M, Rice S, Jiang L, et al. A rewiring model of intratumoral interaction networks[J]. Comput Struct Biotechnol J, 2020, 18: 45-51. DOI: 10.1016/j.csbj.2019.11.009.
    [23]
    Dong A, Zhao J, Griffin C, et al. The genomic physics of COVID-19 pathogenesis and spread[J]. Cells, 2021, 11(1): 80. DOI: 10.3390/cells11010080.
    [24]
    Bonabeau E. Agent-based modeling: methods and techniques for simulating human systems[J]. Proc Natl Acad Sci U S A, 2002, 99(suppl_3): 7280-7287. DOI: 10.1073/pnas.082080899.
    [25]
    Epstein JM. Modelling to contain pandemics[J]. Nature, 2009, 460(7256): 687. DOI: 10.1038/460687a.
    [26]
    Eubank S, Guclu H, Kumar VS, et al. Modelling disease outbreaks in realistic urban social networks[J]. Nature, 2004, 429(6988): 180-184. DOI: 10.1038/nature02541.
    [27]
    Yang Y, Atkinson P, Ettema D. Individual space-time activity-based modelling of infectious disease transmission within a city[J]. J R Soc Interface, 2008, 5(24): 759-772. DOI: 10.1098/rsif.2007.1218.
    [28]
    Gorman DM, Mezic J, Mezic I, et al. Agent-based modeling of drinking behavior: a preliminary model and potential applications to theory and practice[J]. Am J Public Health, 2006, 96(11): 2055-2060. DOI: 10.2105/ajph.2005.063289.
    [29]
    Axtell R, Durlauf S, Epstein JM, et al. Social influences and smoking behavior final report to the american legacy foundation[J]. 2006.
    [30]
    Jackson JC, Rand D, Lewis K, et al. Agent-based modeling: a guide for social psychologists[J]. Soc Psychol Personal Sci, 2017, 8(4): 387-395. DOI: 10.1177/1948550617691100.
    [31]
    Auchincloss AH, Riolo RL, Brown DG, et al. An agent-based model of income inequalities in diet in the context of residential segregation[J]. Am J Prev Med, 2011, 40(3): 303-311. DOI: 10.1016/j.amepre.2010.10.033.
    [32]
    Flatt JP. Carbohydrate—fat interactions and obesity examined by a two‐compartment computer model[J]. Obes Res, 2004, 12(12): 2013-2022. DOI: 10.1038/oby.2004.252.
    [33]
    Yang Y, Diez Roux AV, Auchincloss AH, et al. A spatial agent-based model for the simulation of adults' daily walking within a city[J]. Am J Prev Med, 2011, 40(3): 353-361. DOI: 10.1016/j.amepre.2010.11.017.
    [34]
    Kanagarajah AK, Lindsay P, Miller A, et al. An exploration into the uses of agent-based modeling to improve quality of healthcare[M]. Unifying themes in complex systems. Springer, 2010: 471-478. DOI: 10.1007/978-3-540-85081-6_58.
    [35]
    Sibbel R, Urban C. Agent-based modeling and simulation for hospital management[M]. Cooperative agents. Springer, 2001: 183-202. DOI: 10.1007/978-94-017-1177-7_11.
    [36]
    Lee BY, Brown ST, Cooley PC, et al. A computer simulation of employee vaccination to mitigate an influenza epidemic[J]. Am J Prev Med, 2010, 38(3): 247-257. DOI: 10.1016/j.amepre.2009.11.009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (927) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return