Citation: | ZHAO Xin, WEI Yi-fang, LI Ling-mei, SHI Guo-jing, FANG Rui-ling, CAO Hong-yan. Multi-omics data integration molecular subtyping of lower-grade gliomas based on MOVICS clustering ensemble[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(2): 216-223. doi: 10.16462/j.cnki.zhjbkz.2023.02.015 |
[1] |
Shen F, Wu CX, Yao Y, et al. Transition over 35 years in the incidence rates of primary central nervous system tumors in Shanghai, China and histological subtyping based on a single center experience spanning 60 years[J]. Asian Pac J Cancer Prev, 2013, 14(12): 7385-7393. DOI: 10.7314/apjcp.2013.14.12.7385.
|
[2] |
Xue S, Hu M, Iyer V, et al. Blocking the PD-1/PD-L1 pathway in glioma: A potential new treatment strategy[J]. J Hematol Oncol, 2017, 10(1): 81. DOI: 10.1186/s13045-017-0455-6.
|
[3] |
Zhang HB, Li XS, Li YT, et al. An Immune-related signature for predicting the prognosis of lower-grade gliomas[J]. Front Immunol, 2020, 11: 603341. DOI: 10.3389/fimmu.2020.603341.
|
[4] |
Xia MY, Chen HY, Chen T, et al. Transcriptional networks identify BRPF1 as a potential drug target based on inflammatory signature in primary lower-grade gliomas[J]. Front Oncol, 2021, 11: 766656. DOI: 10.3389/fonc.2021.766656.
|
[5] |
Giordano TJ. The cancer genome atlas research network: a sight to behold[J]. Endocr Pathol, 2014, 25(4): 362-365. DOI: 10.1007/s12022-014-9345-4.
|
[6] |
沈思鹏, 张汝阳, 魏永越, 等. 多组学数据整合分析的统计方法研究进展[J]. 中华疾病控制杂志, 2018, 22(8): 763-765, 771. DOI: 10.16462/j.cnki.zhjbkz.2018.08.001.
Shen SP, Zhang RY, Wei YY, et al. Research progress on multi-omics integrative analysis methods[J]. Chin J Dis Control Prev, 2018, 22(8): 763-765, 771. DOI: 10.16462/j.cnki.zhjbkz.2018.08.001.
|
[7] |
Zhao Z, Zhang KN, Wang Q, et al. Chinese Glioma Genome Atlas (CGGA): a comprehensive resource with functional genomic data from Chinese Glioma Patients[J]. Genom Proteom Bioinf, 2021, 19(1): 1-12. DOI: 10.1016/j.gpb.2020.10.005.
|
[8] |
Rappoport N, Shamir R. Multi-omic and multi-view clustering algorithms: Review and cancer benchmark[J]. Nucleic Acids Res, 2018, 46(20): 10546-10562. DOI: 10.1093/nar/gky899.
|
[9] |
Alqurashi T, Wang WJ. Clustering ensemble method[J]. Springer Verlag, 2019, 10(6): 1227-1246. DOI: 10.1007/s13042-017-0756-7.
|
[10] |
Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer[J]. Nat Med, 2015, 21(11): 1350-1356. DOI: 10.1038/nm.3967.
|
[11] |
Strehl A, Ghosh J. Cluster ensembles---a knowledge reuse framework for combining multiple partitions[J]. J Mach Learn Res, 2002, 3: 583-617. DOI: 10.1162/153244303321897735.
|
[12] |
He S, Song XY, Yang XX, et al. COMSUC: A web server for the identification of consensus molecular subtypes of cancer based on multiple methods and multi-omics data[J]. PLoS Comput Biol, 2021, 17(3): e1008769. DOI: 10.1038/s41587-019-0055-9.
|
[13] |
Lu XF, Meng JL, Zhou YJ, et al. MOVICS: An R package for multi-omics integration and visualization in cancer subtyping[J]. Bioinformatics, 2020, 36(22-23): 5539-5541. DOI: 10.1093/bioinformatics/btaa1018.
|
[14] |
Ramazzotti D, Lal A, Wang B, et al. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival[J]. Nat Commun, 2018, 9(1): 4453. DOI: 10.1038/s41467-018-06921-8.
|
[15] |
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments[J]. Stat Appl Genet Mol Biol, 2004, 3(1): 177-187. DOI: 10.2202/1544-6115.1027.
|
[16] |
Ma JB, Li R, Wang J. Characterization of a prognostic four-gene methylation signature associated with radiotherapy for head and neck squamous cell carcinoma[J]. Mol Med Rep, 2019, 20(1): 622-632. DOI: 10.3892/mmr.2019.10294.
|
[17] |
Dweep H, Gretz N, Sticht C. MiRWalk database for miRNA-target interactions[J]. Methods Mol Biol, 2014, 1182: 289-305. DOI: 10.1007/978-1-4939-1062-5_25.
|
[18] |
Xie C, Mao XZ, Huang JJ, et al. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Res, 2011, 39(SUPPL. 2): W316-W322. DOI: 10.1093/nar/gkr483.
|
[19] |
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: Tool for the unification of biology[J]. Nat Genet, 2000, 25(1): 25-29. DOI: 10.1038/75556.
|
[20] |
Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Res, 2012, 40(D1): D109-D114. DOI: 10.1093/nar/gkr988.
|
[21] |
Schubert M, Klinger B, Klünemann M, et al. Perturbation-response genes reveal signaling footprints in cancer gene expression[J]. Nat Commun, 2018, 9(1): 1-11. DOI: 10.1038/s41467-017-02391-6.
|
[22] |
Markouli M, Strepkos D, Papavassiliou AG, et al. Targeting of endoplasmic reticulum (ER) stress in gliomas[J]. Pharmacol Res, 2020, 157: 104823. DOI: 10.1016/j.phrs.2020.104823.
|
[23] |
Sopha P, Kadokura H, Yamamoto Y, et al. A novel mammalian ER-located J-protein, DNAJB14, can accelerate ERAD of misfolded membrane proteins[J]. Cell Struct Funct, 2012, 37(2): 177-187. DOI: 10.1247/csf.12017.
|
[24] |
Bozgeyik I, Yumrutas O, Bozgeyik E. MTUS1, a gene encoding angiotensin-Ⅱ type 2 (AT2) receptor-interacting proteins, in health and disease, with special emphasis on its role in carcinogenesis[J]. Gene, 2017, 626: 54-63. DOI: 10.1016/j.gene.2017.05.019.
|
[25] |
Ranjan N, Pandey V, Panigrahi MK, et al. The tumor suppressor mtus1/atip1 modulates tumor promotion in glioma: Association with epigenetics and dna repair[J]. Cancers, 2021, 13(6): 1-21. DOI: 10.3390/cancers13061245.
|
[26] |
Fu R, Ding Y, Luo J, et al. Ten-eleven translocation 1 regulates methylation of autophagy-related genes in human glioma[J]. Neuroreport, 2018, 29(9): 731-738. DOI: 10.1097/WNR.0000000000001024.
|
[27] |
Hu C, Fang D, Xu HJ, et al. The androgen receptor expression and association with patient's survival in different cancers[J]. Genomics, 2020, 112(2): 1926-1940. DOI: 10.1016/j.ygeno.2019.11.005.
|
[28] |
张智峰. TRAIL及其在脑胶质瘤中的研究应用进展[J]. 国外医学: 神经病学神经外科学分册, 2002, 29(4): 363-366. DOI: 10.16636/j.cnki.jinn.2002.04.027.
Zhang ZF. Progress in TRAIL and its application in glioma[J]. Foreign Med Sci: Psychiatry, 2002, 29(4): 363-366. DOI: 10.16636/j.cnki.jinn.2002.04.027.
|
[29] |
Pollack IF, Erff M, Ashkenazi A. Direct stimulation of apoptotic signaling by soluble Apo2l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells[J]. Clin Cancer Res, 2001, 7(5): 1362-1369.
|
[30] |
邓钢, 陈谦学. 恶性胶质瘤中的EGFR-STAT3信号通路[J]. 中国神经肿瘤杂志, 2012, 10(3): 205-208.
Deng G, Chen QX. EGFR-STAT3 signal pathway in malignant glioma[J]. Chin J Neuro-Oncol, 2012, 10(3): 205-208.
|
[31] |
Wang H, Wang X, Xu L, et al. Analysis of the EGFR Amplification and CDKN2A Deletion Regulated Transcriptomic Signatures Reveals the Prognostic Significance of SPATS2L in Patients with Glioma[J]. Front Oncol, 2021, 11: 713. DOI: 10.3389/fonc.2021.551160.
|
[32] |
张学新, 苏君, 常亮, 等. VEGF在低级别胶质瘤复发, 恶变过程中的表达及意义[J]. 中国误诊学杂志, 2012, 12(2): 329-330. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZX201202073.htm
Zhang XX, Su J, Chang L, et al. Expression and significance of VEGF in low grade glioma relapse and malignant transformation[J]. Chin J Misdiagn, 2012, 12(2): 329-330. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZX201202073.htm
|