Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 27 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
HUANG Xing-cheng, ZHUANG Chun-lan, LIU Xiao-hui, HU Xiao-wen, WU Ting. Advances and challenges in intranasal vaccines development for respiratory infectious diseases[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(2): 231-237. doi: 10.16462/j.cnki.zhjbkz.2023.02.017
Citation: HUANG Xing-cheng, ZHUANG Chun-lan, LIU Xiao-hui, HU Xiao-wen, WU Ting. Advances and challenges in intranasal vaccines development for respiratory infectious diseases[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(2): 231-237. doi: 10.16462/j.cnki.zhjbkz.2023.02.017

Advances and challenges in intranasal vaccines development for respiratory infectious diseases

doi: 10.16462/j.cnki.zhjbkz.2023.02.017
Funds:

National Key Research and Development Program of China 2020YFC0842600

More Information
  • Corresponding author: WU Ting, E-mail: wuting@xmu.edu.cn
  • Received Date: 2022-02-12
  • Rev Recd Date: 2022-04-15
  • Available Online: 2023-02-20
  • Publish Date: 2023-02-10
  • The great challenge to prevent transmission makes widespread of respiratory infectious diseases easily occur. Intranasal immunization is considered to be a promising route of vaccination to prevent it. Different from parenteral vaccines, intranasal vaccines can induce mucosal immune in respiratory tracts in addition to systemic immune, which provide the first line of defense against respiratory pathogen infection and further prevent transmission. Safe and effective intranasal spray flu vaccines have been licensed. Since the outbreak of COVID-19, intranasal administration has been applied in different vaccine platforms. This article has reviewed the progress of intranasal vaccines for respiratory infectious diseases that have been licensed or are under evaluation in the clinical trials, meanwhile discusses its unique advantages and challenges faced.
  • loading
  • [1]
    Hellfritzsch M, Scherliess R. Mucosal vaccination via the respiratory tract[J]. Pharmaceutics, 2019, 11(8): 375. DOI: 10.3390/pharmaceutics11080375.
    [2]
    Czerkinsky C, Holmgren J. Topical immunization strategies[J]. Mucosal Immunol, 2010, 3(6): 545-555. DOI: 10.1038/mi.2010.55.
    [3]
    Kraehenbuhl JP, Neutra MR. Mucosal V: where do we stand?[J]. Curr Top Med Chem, 2013, 13(20): 2609-2628. DOI: 10.2174/15680266113136660186.
    [4]
    Krammer F. SARS-CoV-2 vaccines in development[J]. Nature, 2020, 586(7830): 516-527. DOI: 10.1038/s41586-020-2798-3.
    [5]
    Lobaina Mato. Nasal route for vaccine and drug delivery: features and current opportunities[J]. Int J Pharm, 2019, 572: 118813. DOI: 10.1016/j.ijpharm.2019.11-8813.
    [6]
    Rudenko L, Van DBH, Kiseleva I, et al. Live attenuated pandemic influenza vaccine: clinical studies on A/17/California/2009/38 (H1N1) and licensing of the Russian-developed technology to WHO for pandemic influenza preparedness in developing countries[J]. Vaccine, 2011, 29 Suppl 1: A40-A44. DOI: 10.1016/j.va-ccine.2011.04.122.
    [7]
    Biodiem. LAIV[EB/OL]. (2021-10-23)[2022-04-14]. https://www.biodiem.com/l-aiv/.
    [8]
    Treanor JJ, Kotloff K, Betts RF, et al. Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses[J]. Vaccine, 1999, 18(9-10): 899-906. DOI: 10.1016/s0264-410x(99)00334-5.
    [9]
    Ohmit SE, Thompson MG, Petrie JG, et al. Influenza vaccine effectiveness in the 2011-2012 season: protection against each circulating virus and the effect of prior vaccination on estimates[J]. Clin Infect Dis, 2014, 58(3): 319-327. DOI: 10.1093-/cid/cit736.
    [10]
    Mclean HQ, Thompson MG, Sundaram ME, et al. Influenza vaccine effectiveness in the United States during 2012-2013: variable protection by age and virus type[J]. J Infect Dis, 2015, 211(10): 1529-1540. DOI: 10.1093/infdis/jiu647.
    [11]
    Treanor JJ, Talbot HK, Ohmit SE, et al. Effectiveness of seasonal influenza vaccines in the United States during a season with circulation of all three vaccine strains[J]. Clin Infect Dis, 2012, 55(7): 951-959. DOI: 10.1093/cid/cis574.
    [12]
    Gaglani M, Pruszynski J, Murthy K, et al. Influenza vaccine effectiveness against 2009 pandemic influenza A(H1N1) virus differed by vaccine type during 2013-2014 in the United States[J]. J Infect Dis, 2016, 213(10): 1546-1556. DOI: 10.1093/infdis/jiv577.
    [13]
    Gill MA, Schlaudecker EP. Perspectives from the society for pediatric research: decreased effectiveness of the live attenuated influenza vaccine[J]. Pediatr Res, 2018, 83(1-1): 31-40. DOI: 10.1038/pr.2017.239.
    [14]
    FDA. Information Regarding FluMist Quadrivalent Vaccine[EB/OL]. (2018-01-26)[2022-04-14]. https://www.fda.gov/vaccines-blood-biologics/vaccines/fda informat-ion-regarding-flumist-quadrivalent-vaccine.
    [15]
    Tasker S, Wight O'Rourke A, Suyundikov A, et al. Safety and immunogenicity of a novel intranasal influenza vaccine (NasoVAX): a phase 2 randomized, controlled trial[J]. Vaccines (Basel), 2021, 9(3): 224. DOI: 10.3390/vaccines9030224.
    [16]
    Skowronski DM, Janjua NZ, De Serres G, et al. Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses[J]. PLoS One, 2014, 9(3): e92153. DOI: 10.13-71/journal.pone.0092153.
    [17]
    Bicho D, Queiroz JA, Tomaz CT. Influenza plasmid DNA vaccines: progress and prospects[J]. Curr Gene Ther, 2015, 15(6): 541-549. DOI: 10.2174/15665232156-66150929111048.
    [18]
    Kremer EJ, Perricaudet M. Adenovirus and adeno-associated virus mediated gene transfer[J]. Br Med Bull, 1995, 51(1): 31-44. DOI: 10.1093/oxfordjournals.bmb.a-072951.
    [19]
    Khan AS, Polezhaev F, Vasiljeva R, et al. Comparison of US inactivated split-virus and Russian live attenuated, cold-adapted trivalent influenza vaccines in russian schoolchildren[J]. J Infect Dis, 1996, 173(2): 453-456. DOI: 10.1093/infdi-s/173.2.453.
    [20]
    Rudenko LG, Arden NH, Grigorieva E, et al. Immunogenicity and efficacy of Russian live attenuated and US inactivated influenza vaccines used alone and in combination in nursing home residents[J]. Vaccine, 2000, 19(2): 308-318. DOI: 10.1016/S0264-410X(00)00153-5.
    [21]
    WHO. COVID-19 vaccine tracker and landscape[EB/OL]. (2022-01-11)[2022-04-14]. https://www.who.int/teams/blueprint/covid-19/covid-19-vaccine-tracker-and-landscape.
    [22]
    Russia: State Register of Medicinal Product. Gam-COVID-Vac Combined vector vaccine for the prevention of coronavirus infection caused by the SARS-CoV-2 virus[EB/OL]. (2022-03-29)[2022-04-14]. https://grls.rosminzdrav.ru/Grls_Vie-w_v2.a-spx?routingGuid=c9b0af9a-2d86-4ad1-8c53-9a0087b6c270&=.
    [23]
    Wang P, Zheng M, Lau SY, et al. Generation of DelNS1 influenza viruses: a strategy for optimizing live attenuated influenza vaccines[J]. mBio, 2019, 10(5): e02180-19. DOI: 10.1128/mBio.02180-19.
    [24]
    Chen J, Wang P, Yuan L, et al. A live attenuated influenza virus-vectored intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2 infection[J]. Sci Bull (Beijing), 2022, 67(13): 1372-1387. DOI: 10.1016/j.scib.2022.05.018.
    [25]
    Pilankatta R, Chawla T, Khanna N, et al. The prevalence of antibodies to adenovirus serotype 5 in an adult Indian population and implications for adenovirus vector vaccines[J]. J Med Virol, 2010, 82(3): 407-414. DOI: 10.1002/jmv.21721.
    [26]
    Barouch DH, Kik SV, Weverling GJ, et al. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations[J]. Vaccine, 2011, 29(32): 5203-5209. DOI: 10.1016/j.vaccine.2011.05.025.
    [27]
    Zaiss AK, Machado HB, Herschman HR. The influence of innate and pre-existing immunity on adenovirus therapy[J]. J Cell Biochem, 2009, 108(4): 778-790. DOI: 10.1002/jcb.22328.
    [28]
    Van Doremalen N, Purushotham JW, Schulz JE, et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces shedding of SARS-CoV-2 D614G in rhesus macaques[J]. Sci Transl Med, 2021, 13(607): eabh0755. DOI: 10.1126/scitranslmed.abh0755.
    [29]
    Hassan AO, Kafai NM, Dmitriev IP, et al. A single-dose intranasal chAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2[J]. Cell, 2020, 183(1): 169-184. DOI: 10.1016/j.cell.2020.08.026.
    [30]
    Stobart CC, Rostad CA, Ke ZL, et al. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation[J]. Nat Commun, 2016, 7: 13916. DOI: 10.1038/ncomms13916.
    [31]
    Tioni MF, Jordan R, Pena AS, et al. One mucosal administration of a live attenuated recombinant COVID-19 vaccine protects nonhuman primates from SARS-CoV-2[J]. NPJ Vaccines, 2022, 7(1): 85. DOI: 10.1038/s41541-022-00509-6.
    [32]
    Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets[J]. Nat Microbiol, 2021, 6(7): 899-909. DOI: 10.1038/s41564-021-00908-w.
    [33]
    Johnson BA, Xie XP, Bailey AL, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis[J]. Nature, 2021, 591(7849): 293-299. DOI: 10.1038/s41586-021-03237-4.
    [34]
    Wang Y, Yang C, Song YT, et al. Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy[J]. Proc Natl Acad Sci USA, 2021, 118(29): e2102775118. DOI: 10.1073/pnas.2102775118.
    [35]
    Moradi Vahdat M, Hemmati F, Ghorbani A, et al. Hepatitis B core-based virus-like particles: A platform for vaccine development in plants[J]. Biotechnol Rep (Amst), 2021, 29: e00605. DOI: 10.1016/j.btre.2021.e00605.
    [36]
    Billaud JN, Peterson D, Schodel F, et al. Comparative antigenicity and immunogenicity of hepadnavirus core proteins[J]. J Virol, 2005, 79(21): 13641-13655. DOI: 10.1128/JVI.79.21.13641-13655.2005.
    [37]
    Center for Genetic E. Biotechnology I H. MAMBISA Study[EB/OL]. (2020-11-26)[2022-04-14]. https://rpcec.sld.cu/en/trials/RPCEC00000345-En.
    [38]
    Center for Genetic E. Biotechnology. CIGB-Mambisa/Abdala in convalescents[EB/OL]. (2021-09-08)[2022-04-14]. https://rpcec.sld.cu/en/trials/RPCEC000003-82-En.
    [39]
    Thorstensson R, Trollfors B, Al-Tawil N, et al. A phase I clinical study of a live attenuated Bordetella pertussis vaccine--BPZE1; a single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male volunteers[J]. PLoS One, 2014, 9(1): e83449. DOI: 10.1371/journal.po-ne.0083449.
    [40]
    Soundarya JSV, Ranganathan UD, Tripathy SP. Current trends in tuberculosis vaccine[J]. Med J Armed Forces India, 2019, 75(1): 18-24. DOI: 10.1016/j.mjafi.2018.12.013.
    [41]
    Piedra PA. Safety of the trivalent, cold-adapted influenza vaccine (CAIV-T) in children[J]. Semin Pediatr Infect Dis, 2002, 13(2): 90-96. DOI: 10.1053/spid.2002.122995.
    [42]
    Kendal AP. Cold-adapted live attenuated influenza vaccines developed in Russia: can they contribute to meeting the needs for influenza control in other countries?[J]. Eur J Epidemiol, 1997, 13(5): 591-609. DOI: 10.1023/a:1007327505862.
    [43]
    Ainai A, Ichinohe T, Tamura SZ, et al. Zymosan enhances the mucosal adjuvant activity of poly(I: C) in a nasal influenza vaccine[J]. J Med Virol, 2010, 82(3): 476-484. DOI: 10.1002/jmv.21694.
    [44]
    Tamura SI, Ainai A, Suzuki T, et al. Intranasal Inactivated Influenza Vaccines: a Reasonable Approach to Improve the Efficacy of Influenza Vaccine?[J]. Jpn J Infect Dis, 2016, 69(3): 165-179. DOI: 10.7883/yoken.JJID.2015.560.
    [45]
    Vesikari T, Karvonen A, Korhonen T, et al. A randomized, double-blind study of the safety, transmissibility and phenotypic and genotypic stability of cold-adapted influenza virus vaccine[J]. Pediatr Infect Dis J, 2006, 25(7): 590-595. DOI: 10.1097/01.inf.0000220229.51531.47.
    [46]
    Block SL, Yogev R, Hayden FG, et al. Shedding and immunogenicity of live attenuated influenza vaccine virus in subjects 5-49 years of age[J]. Vaccine, 2008, 26(38): 4940-4946. DOI: 10.1016/j.vaccine.2008.07.013.
    [47]
    Izurieta HS, Haber P, Wise RP, et al. Adverse events reported following live, cold-adapted, intranasal influenza vaccine[J]. JAMA, 2005, 294(21): 2720-2725. DOI: 10.1001/jama.294.21.2720.
    [48]
    Earle KA, Ambrosino DM, Fiore-Gartland A, et al. Evidence for antibody as a protective correlate for COVID-19 vaccines[J]. Vaccine, 2021, 39(32): 4423-4428. DOI: 10.1016/j.vaccine.2021.05.063.
    [49]
    Nigwekar PV, Kumar A, Padbidri VV, et al. Safety of Russian-Backbone Trivalent, Live Attenuated Seasonal Influenza Vaccine in Healthy Subjects: Open-Label, Non-randomized Phase 4 Study[J]. Drug Safety, 2018, 41(2): 171-177. DOI: 10.1007/s-40264-017-0605-3.
    [50]
    Sun WN, Leist SR, Mccroskery S, et al. Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate[J]. EBioMedicine, 2020, 62: 103132. DOI: 10.1101/2020.07.26.221861.
    [51]
    An D, Li K, Rowe DK, et al. Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5-based COVID-19 vaccine[J]. Sci Adv, 2021, 7(27): eabi5246. DOI: 10.1126/sciadv.abi5246.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (583) PDF downloads(168) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return