Citation: | HUANG Xing-cheng, ZHUANG Chun-lan, LIU Xiao-hui, HU Xiao-wen, WU Ting. Advances and challenges in intranasal vaccines development for respiratory infectious diseases[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(2): 231-237. doi: 10.16462/j.cnki.zhjbkz.2023.02.017 |
[1] |
Hellfritzsch M, Scherliess R. Mucosal vaccination via the respiratory tract[J]. Pharmaceutics, 2019, 11(8): 375. DOI: 10.3390/pharmaceutics11080375.
|
[2] |
Czerkinsky C, Holmgren J. Topical immunization strategies[J]. Mucosal Immunol, 2010, 3(6): 545-555. DOI: 10.1038/mi.2010.55.
|
[3] |
Kraehenbuhl JP, Neutra MR. Mucosal V: where do we stand?[J]. Curr Top Med Chem, 2013, 13(20): 2609-2628. DOI: 10.2174/15680266113136660186.
|
[4] |
Krammer F. SARS-CoV-2 vaccines in development[J]. Nature, 2020, 586(7830): 516-527. DOI: 10.1038/s41586-020-2798-3.
|
[5] |
Lobaina Mato. Nasal route for vaccine and drug delivery: features and current opportunities[J]. Int J Pharm, 2019, 572: 118813. DOI: 10.1016/j.ijpharm.2019.11-8813.
|
[6] |
Rudenko L, Van DBH, Kiseleva I, et al. Live attenuated pandemic influenza vaccine: clinical studies on A/17/California/2009/38 (H1N1) and licensing of the Russian-developed technology to WHO for pandemic influenza preparedness in developing countries[J]. Vaccine, 2011, 29 Suppl 1: A40-A44. DOI: 10.1016/j.va-ccine.2011.04.122.
|
[7] |
Biodiem. LAIV[EB/OL]. (2021-10-23)[2022-04-14].
|
[8] |
Treanor JJ, Kotloff K, Betts RF, et al. Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses[J]. Vaccine, 1999, 18(9-10): 899-906. DOI: 10.1016/s0264-410x(99)00334-5.
|
[9] |
Ohmit SE, Thompson MG, Petrie JG, et al. Influenza vaccine effectiveness in the 2011-2012 season: protection against each circulating virus and the effect of prior vaccination on estimates[J]. Clin Infect Dis, 2014, 58(3): 319-327. DOI: 10.1093-/cid/cit736.
|
[10] |
Mclean HQ, Thompson MG, Sundaram ME, et al. Influenza vaccine effectiveness in the United States during 2012-2013: variable protection by age and virus type[J]. J Infect Dis, 2015, 211(10): 1529-1540. DOI: 10.1093/infdis/jiu647.
|
[11] |
Treanor JJ, Talbot HK, Ohmit SE, et al. Effectiveness of seasonal influenza vaccines in the United States during a season with circulation of all three vaccine strains[J]. Clin Infect Dis, 2012, 55(7): 951-959. DOI: 10.1093/cid/cis574.
|
[12] |
Gaglani M, Pruszynski J, Murthy K, et al. Influenza vaccine effectiveness against 2009 pandemic influenza A(H1N1) virus differed by vaccine type during 2013-2014 in the United States[J]. J Infect Dis, 2016, 213(10): 1546-1556. DOI: 10.1093/infdis/jiv577.
|
[13] |
Gill MA, Schlaudecker EP. Perspectives from the society for pediatric research: decreased effectiveness of the live attenuated influenza vaccine[J]. Pediatr Res, 2018, 83(1-1): 31-40. DOI: 10.1038/pr.2017.239.
|
[14] |
FDA. Information Regarding FluMist Quadrivalent Vaccine[EB/OL]. (2018-01-26)[2022-04-14].
|
[15] |
Tasker S, Wight O'Rourke A, Suyundikov A, et al. Safety and immunogenicity of a novel intranasal influenza vaccine (NasoVAX): a phase 2 randomized, controlled trial[J]. Vaccines (Basel), 2021, 9(3): 224. DOI: 10.3390/vaccines9030224.
|
[16] |
Skowronski DM, Janjua NZ, De Serres G, et al. Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses[J]. PLoS One, 2014, 9(3): e92153. DOI: 10.13-71/journal.pone.0092153.
|
[17] |
Bicho D, Queiroz JA, Tomaz CT. Influenza plasmid DNA vaccines: progress and prospects[J]. Curr Gene Ther, 2015, 15(6): 541-549. DOI: 10.2174/15665232156-66150929111048.
|
[18] |
Kremer EJ, Perricaudet M. Adenovirus and adeno-associated virus mediated gene transfer[J]. Br Med Bull, 1995, 51(1): 31-44. DOI: 10.1093/oxfordjournals.bmb.a-072951.
|
[19] |
Khan AS, Polezhaev F, Vasiljeva R, et al. Comparison of US inactivated split-virus and Russian live attenuated, cold-adapted trivalent influenza vaccines in russian schoolchildren[J]. J Infect Dis, 1996, 173(2): 453-456. DOI: 10.1093/infdi-s/173.2.453.
|
[20] |
Rudenko LG, Arden NH, Grigorieva E, et al. Immunogenicity and efficacy of Russian live attenuated and US inactivated influenza vaccines used alone and in combination in nursing home residents[J]. Vaccine, 2000, 19(2): 308-318. DOI: 10.1016/S0264-410X(00)00153-5.
|
[21] |
WHO. COVID-19 vaccine tracker and landscape[EB/OL]. (2022-01-11)[2022-04-14].
|
[22] |
Russia: State Register of Medicinal Product. Gam-COVID-Vac Combined vector vaccine for the prevention of coronavirus infection caused by the SARS-CoV-2 virus[EB/OL]. (2022-03-29)[2022-04-14].
|
[23] |
Wang P, Zheng M, Lau SY, et al. Generation of DelNS1 influenza viruses: a strategy for optimizing live attenuated influenza vaccines[J]. mBio, 2019, 10(5): e02180-19. DOI: 10.1128/mBio.02180-19.
|
[24] |
Chen J, Wang P, Yuan L, et al. A live attenuated influenza virus-vectored intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2 infection[J]. Sci Bull (Beijing), 2022, 67(13): 1372-1387. DOI: 10.1016/j.scib.2022.05.018.
|
[25] |
Pilankatta R, Chawla T, Khanna N, et al. The prevalence of antibodies to adenovirus serotype 5 in an adult Indian population and implications for adenovirus vector vaccines[J]. J Med Virol, 2010, 82(3): 407-414. DOI: 10.1002/jmv.21721.
|
[26] |
Barouch DH, Kik SV, Weverling GJ, et al. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations[J]. Vaccine, 2011, 29(32): 5203-5209. DOI: 10.1016/j.vaccine.2011.05.025.
|
[27] |
Zaiss AK, Machado HB, Herschman HR. The influence of innate and pre-existing immunity on adenovirus therapy[J]. J Cell Biochem, 2009, 108(4): 778-790. DOI: 10.1002/jcb.22328.
|
[28] |
Van Doremalen N, Purushotham JW, Schulz JE, et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces shedding of SARS-CoV-2 D614G in rhesus macaques[J]. Sci Transl Med, 2021, 13(607): eabh0755. DOI: 10.1126/scitranslmed.abh0755.
|
[29] |
Hassan AO, Kafai NM, Dmitriev IP, et al. A single-dose intranasal chAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2[J]. Cell, 2020, 183(1): 169-184. DOI: 10.1016/j.cell.2020.08.026.
|
[30] |
Stobart CC, Rostad CA, Ke ZL, et al. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation[J]. Nat Commun, 2016, 7: 13916. DOI: 10.1038/ncomms13916.
|
[31] |
Tioni MF, Jordan R, Pena AS, et al. One mucosal administration of a live attenuated recombinant COVID-19 vaccine protects nonhuman primates from SARS-CoV-2[J]. NPJ Vaccines, 2022, 7(1): 85. DOI: 10.1038/s41541-022-00509-6.
|
[32] |
Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets[J]. Nat Microbiol, 2021, 6(7): 899-909. DOI: 10.1038/s41564-021-00908-w.
|
[33] |
Johnson BA, Xie XP, Bailey AL, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis[J]. Nature, 2021, 591(7849): 293-299. DOI: 10.1038/s41586-021-03237-4.
|
[34] |
Wang Y, Yang C, Song YT, et al. Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy[J]. Proc Natl Acad Sci USA, 2021, 118(29): e2102775118. DOI: 10.1073/pnas.2102775118.
|
[35] |
Moradi Vahdat M, Hemmati F, Ghorbani A, et al. Hepatitis B core-based virus-like particles: A platform for vaccine development in plants[J]. Biotechnol Rep (Amst), 2021, 29: e00605. DOI: 10.1016/j.btre.2021.e00605.
|
[36] |
Billaud JN, Peterson D, Schodel F, et al. Comparative antigenicity and immunogenicity of hepadnavirus core proteins[J]. J Virol, 2005, 79(21): 13641-13655. DOI: 10.1128/JVI.79.21.13641-13655.2005.
|
[37] |
Center for Genetic E. Biotechnology I H. MAMBISA Study[EB/OL]. (2020-11-26)[2022-04-14].
|
[38] |
Center for Genetic E. Biotechnology. CIGB-Mambisa/Abdala in convalescents[EB/OL]. (2021-09-08)[2022-04-14].
|
[39] |
Thorstensson R, Trollfors B, Al-Tawil N, et al. A phase I clinical study of a live attenuated Bordetella pertussis vaccine--BPZE1; a single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male volunteers[J]. PLoS One, 2014, 9(1): e83449. DOI: 10.1371/journal.po-ne.0083449.
|
[40] |
Soundarya JSV, Ranganathan UD, Tripathy SP. Current trends in tuberculosis vaccine[J]. Med J Armed Forces India, 2019, 75(1): 18-24. DOI: 10.1016/j.mjafi.2018.12.013.
|
[41] |
Piedra PA. Safety of the trivalent, cold-adapted influenza vaccine (CAIV-T) in children[J]. Semin Pediatr Infect Dis, 2002, 13(2): 90-96. DOI: 10.1053/spid.2002.122995.
|
[42] |
Kendal AP. Cold-adapted live attenuated influenza vaccines developed in Russia: can they contribute to meeting the needs for influenza control in other countries?[J]. Eur J Epidemiol, 1997, 13(5): 591-609. DOI: 10.1023/a:1007327505862.
|
[43] |
Ainai A, Ichinohe T, Tamura SZ, et al. Zymosan enhances the mucosal adjuvant activity of poly(I: C) in a nasal influenza vaccine[J]. J Med Virol, 2010, 82(3): 476-484. DOI: 10.1002/jmv.21694.
|
[44] |
Tamura SI, Ainai A, Suzuki T, et al. Intranasal Inactivated Influenza Vaccines: a Reasonable Approach to Improve the Efficacy of Influenza Vaccine?[J]. Jpn J Infect Dis, 2016, 69(3): 165-179. DOI: 10.7883/yoken.JJID.2015.560.
|
[45] |
Vesikari T, Karvonen A, Korhonen T, et al. A randomized, double-blind study of the safety, transmissibility and phenotypic and genotypic stability of cold-adapted influenza virus vaccine[J]. Pediatr Infect Dis J, 2006, 25(7): 590-595. DOI: 10.1097/01.inf.0000220229.51531.47.
|
[46] |
Block SL, Yogev R, Hayden FG, et al. Shedding and immunogenicity of live attenuated influenza vaccine virus in subjects 5-49 years of age[J]. Vaccine, 2008, 26(38): 4940-4946. DOI: 10.1016/j.vaccine.2008.07.013.
|
[47] |
Izurieta HS, Haber P, Wise RP, et al. Adverse events reported following live, cold-adapted, intranasal influenza vaccine[J]. JAMA, 2005, 294(21): 2720-2725. DOI: 10.1001/jama.294.21.2720.
|
[48] |
Earle KA, Ambrosino DM, Fiore-Gartland A, et al. Evidence for antibody as a protective correlate for COVID-19 vaccines[J]. Vaccine, 2021, 39(32): 4423-4428. DOI: 10.1016/j.vaccine.2021.05.063.
|
[49] |
Nigwekar PV, Kumar A, Padbidri VV, et al. Safety of Russian-Backbone Trivalent, Live Attenuated Seasonal Influenza Vaccine in Healthy Subjects: Open-Label, Non-randomized Phase 4 Study[J]. Drug Safety, 2018, 41(2): 171-177. DOI: 10.1007/s-40264-017-0605-3.
|
[50] |
Sun WN, Leist SR, Mccroskery S, et al. Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate[J]. EBioMedicine, 2020, 62: 103132. DOI: 10.1101/2020.07.26.221861.
|
[51] |
An D, Li K, Rowe DK, et al. Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5-based COVID-19 vaccine[J]. Sci Adv, 2021, 7(27): eabi5246. DOI: 10.1126/sciadv.abi5246.
|