Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 27 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHANG Yilin, WANG Chao, LI Mengdie, LIU Zhaorui, LYU Juncheng. Influencing factors analysis and prediction model construction of medical students′ suicidal ideation based on machine learning algorithm[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(11): 1320-1328. doi: 10.16462/j.cnki.zhjbkz.2023.11.013
Citation: ZHANG Yilin, WANG Chao, LI Mengdie, LIU Zhaorui, LYU Juncheng. Influencing factors analysis and prediction model construction of medical students′ suicidal ideation based on machine learning algorithm[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(11): 1320-1328. doi: 10.16462/j.cnki.zhjbkz.2023.11.013

Influencing factors analysis and prediction model construction of medical students′ suicidal ideation based on machine learning algorithm

doi: 10.16462/j.cnki.zhjbkz.2023.11.013
Funds:

Natural Science Foundation of Shandong Province ZR2021MH408

Teaching Case of Professional Degree Postgraduates in Graduate Education of Shandong Province SDYAL20153

Key Research Topic of Academic Degree and Postgraduate Education in China 2020ZDB44

More Information
  • Corresponding author: LYU Juncheng, E-mail: cheng_China@163.com
  • Received Date: 2022-09-23
  • Rev Recd Date: 2023-01-06
  • Available Online: 2023-11-20
  • Publish Date: 2023-11-10
  •   Objective  The purpose of this study is to understand the factors influencing suicidal ideation among medical students and to explore the predictive effect of machine learning (ML) algorithms.  Methods  A random stratified whole-group sampling of medical students in Shandong Province was conducted from November 2021 to March 2022 to conduct the questionnaire survey. The Chi-square test, Fisher′s exact probability method, and Logistic regression were used to explore the factors influencing suicidal ideation among medical students. The prediction models were constructed based on a machine learning algorithm in the training set. The predictive ability of the model was evaluated in the test set based on accuracy, sensitivity, and so on.  Results  The suicidal ideation rate in medical students was 12.80%. The results showed that living in rural areas (OR=1.523, 95% CI: 1.023-2.271, P=0.039), and depression symptoms (OR=3.874, 95% CI: 2.676-5.621, P < 0.001) were risk factors for suicidal ideation. Having not been in love in the past two years (OR=0.601, 95% CI: 0.427-0.841, P=0.003) and so on were protective factors for suicidal ideation. The prediction accuracy and sensitivity of the four models were higher than 0.90, the Kappa values were higher than 0.80, and the positive and negative predictive values were higher than 0.90.  Conclusions  All four prediction models perform well, among which the suicide ideation prediction model based on support vector machine (SVM) has more advantages. The SVM model can effectively predict the risk of suicidal ideation, which is more helpful for early identification and intervention of high-risk groups.
  • loading
  • [1]
    WHO. Suicide[EB/OL]. (2019-09-02)[2020-03-05]. http://www.who.int/zh/news-room/fact-sheets/detail/suicide.
    [2]
    Meyer IH, Luo F, Wilson BDM, et al. Sexual orientation enumeration in state antibullying statutes in the United States: associations with bullying, suicidal ideation, and suicide attempts among youth[J]. LGBT Health, 2019, 6(1): 9-14. DOI: 10.1089/lgbt.2018.0194.
    [3]
    Ruderfer DM, Walsh CG, Aguirre MW, et al. Significant shared heritability underlies suicide attempt and clinically predicted probability of attempting suicide[J]. Mol Psychiatry, 2020, 25(10): 2422-2430. DOI: 10.1038/s41380-018-0326-8.
    [4]
    Sun L, Zhou C, Xu L, et al. Suicidal ideation, plans and attempts among medical college students in China: The effect of their parental characteristics[J]. Psychiatry Res, 2017, 247: 139-143. DOI: 10.1016/j.psychres.2016.11.024.
    [5]
    谭琪钰, 栾烨, 徐超, 等. 中国大学生自杀意念检出率的Meta分析[J]. 现代预防医学, 2022, 49(7): 1269-1274. DOI: 1003-8507(2022)07-1269-06.

    Tan QY, Luan Y, Xu C, et al. Meta-analysis of the detection rate of suicidal ideation among Chinese college students[J]. Modern Prevent Med, 2022, 49(7): 1269-1274. DOI: 1003-8507(2022)07-1269-06.
    [6]
    关素珍, 刘向阳, 郑平, 等. 医学生自杀意念与家庭因素关系的研究[J]. 中国预防医学杂志, 2015, 16(1): 36-38. DOI: 10.16506/j.1009-6639.2015.01.012.

    Guan SZ, Liu XY, Zheng P, et al. A study on the relationship between suicidal ideation and family factors among medical students[J]. Chin J Prev Med, 2015, 16(1): 36-38. DOI: 10.16506/j.1009-6639.2015.01.012.
    [7]
    刘裕兴, 聂光辉, 梁好. 医学生儿童期创伤与自杀意念: 述情障碍和反刍思维的链式中介作用[J]. 中国临床心理学杂志, 2022, 30(3): 683-687. DOI: 10.16128/j.cnki.1005-3611.2022.03.037.

    Liu YX, Nie GH, Liang H. Childhood trauma and suicidal ideation in medical students: the chain mediating role of narrative impairment and ruminative thinking[J]. Chin J Clin Psychol, 2022, 30(3): 683-687. DOI: 10.16128/j.cnki.1005-3611.2022.03.037.
    [8]
    Franklin JC, Ribeiro JD, Fox KR, et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research[J]. Psychol Bull, 2017, 143(2): 187-232. DOI: 10.1037/bul0000084.
    [9]
    Chan MK, Bhatti H, Meader N, et al. Predicting suicide following self-harm: systematic review of risk factors and risk scales[J]. Br J Psychiatry, 2016, 209(4): 277-283. DOI: 10.1192/bjp.bp.115.170050.
    [10]
    Liu X, Liu X, Sun J, et al. Proactive suicide prevention online (PSPO): machine identification and crisis management for Chinese social media users with suicidal thoughts and behaviors[J]. J Med Internet Res, 2019, 21(5): e11705. DOI: 10.2196/11705.
    [11]
    马鸣, 刘欢, 刘润香. 机器学习在大学生自杀意念预测中的应用[J]. 中国学校卫生, 2022, 43(5): 763-767. DOI: 10.16835/j.cnki.1000-9817.2022.05.029.

    Ma M, Liu H, Liu RX. Application of machine learning in the prediction of suicidal ideation among college students[J]. Chin J Sch Health, 2022, 43(5): 763-767. DOI: 10.16835/j.cnki.1000-9817.2022.05.029.
    [12]
    何作力, 张红亚, 李瑞, 等. 2019年大连市中学生抑郁症状现况及影响因素[J]. 预防医学论坛, 2021, 27(2): 88-91. DOI: 10.16406/j.pmt.issn.1672-9153.2021.02.005.

    He ZL, Zhang HY, Li R, et al. Current status of depressive symptoms and influencing factors among secondary school students in Dalian in 2019[J]. Prev Med Forum, 2021, 27(2): 88-91. DOI: 10.16406/j.pmt.issn.1672-9153.2021.02.005.
    [13]
    李献云, 费立鹏, 童永胜, 等. Beck自杀意念量表中文版在社区成年人群中应用的信效度[J]. 中国心理卫生杂志, 2010, 24(4): 250-255. DOI: 10.3969/j.issn.1000-6729.2010.04.003.

    Li XY, Fei LP, Tong YS, et al. Reliability and validity of the Chinese version of Beck Suicidal Ideation Scale in a community-based adult population[J]. Chin J Mental Health, 2010, 24(4): 250-255. DOI: 10.3969/j.issn.1000-6729.2010.04.003.
    [14]
    阿拉依·阿汗, 田翔华, 肖齐, 等. 关联规则与Logistic回归在维吾尔族健康体检人群代谢综合征数据挖掘中的应用[J]. 现代预防医学, 2018, 45(7): 1161-1165. DOI: 1003-8507(2018)07-1161-05.

    Alai A, Tian XH, Xiao Q, et al. Application of association rules and logistic regression in data mining of metabolic syndrome in Uyghur health checkup population[J]. Mode Prev Med, 2018, 45(7): 1161-1165. DOI: 1003-8507(2018)07-1161-05.
    [15]
    董红瑶, 王弈丹, 李丽红. 随机森林优化算法综述[J]. 信息与电脑, 2021, 33(17): 34-37. DOI: 1003-9767(2021)17-034-04.

    Dong HY, Wang YD, Li LH. A review of random forest optimization algorithms[J]. China Computer & Communication, 2021, 33(17): 34-37. DOI: 1003-9767(2021)17-034-04.
    [16]
    张航. 基于朴素贝叶斯的中文文本分类及Python实现[D]. 济南: 山东师范大学, 2018.

    Zhang H. Chinese text classification based on plain Bayes and Python implementation[D]. Jinan: Shandong Normal University, 2018.
    [17]
    韩力群. 人工神经网络教程[M]. 北京: 北京邮电大学出版社. 2006, 125-127.

    Han LQ. Tutorial on Artificial Neural Networks[M]. Beijing: Beijing University of Posts and Telecommunications Press. 2006, 125-127.
    [18]
    赵晓艳. 基于交叉验证的AUC度量的置信区间的研究[D]. 太原: 山西大学, 2021.

    Zhao XY. Research on confidence interval of AUC metric based on cross-validation[D]. Taiyuan: Shanxi University, 2021.
    [19]
    Wege N, Muth T, Li J, et al. Mental health among currently enrolled medical students in Germany[J]. Public Health, 2016, 132: 92-100. DOI: 10.1016/j.puhe.2015.12.014.
    [20]
    王一帆, 孙龙, 魏真, 等. 医学院校学生自杀意念与父母拒绝相关性研究[J]. 伤害医学(电子版), 2021, 10(4): 17-24. DOI: 10.3868/j.issn.2095-1566.2021.04.004.

    Wang YF, Sun L, Wei Z, et al. A study on the correlation between suicidal ideation and parental rejection among medical school students[J]. Injury Medicine(Electronic Edition), 2021, 10(4): 17-24. DOI: 10.3868/j.issn.2095-1566.2021.04.004.
    [21]
    沈可, 黄笛, 杨雨飞, 等. 2007-2020年中国大陆医学生自杀意念发生率的Meta分析[J]. 医学新知, 2020, 30(6): 431-441. DOI: 10.12173/j.issn.1004-5511.2020.06.03.

    Shen K, Huang D, Yang YF, et al. Meta-analysis of the incidence of suicidal ideation among medical students in mainland China from 2007 to 2020[J]. Medicine New, 2020, 30(6): 431-441. DOI: 10.12173/j.issn.1004-5511.2020.06.03.
    [22]
    李海燕, 任梦飞, 鞠磊, 等. 潍坊市中小学生自杀意念与心理健康状况的相关性[J]. 中国健康心理学杂志, 2019, 27(5): 651-654. DOI: 10.13342/j.cnki.cjhp.2019.05.013.

    Li HY, Ren MF, Ju L, et al. Correlation between suicidal ideation and mental health status of primary and secondary school students in Weifang City[J]. China Journal of Health Psychology, 2019, 27(5): 651-654. DOI: 10.13342/j.cnki.cjhp.2019.05.013.
    [23]
    严红虹. 大学生自杀意念影响因素的定量研究与定性研究[D]. 广州: 暨南大学, 2009.

    Yan HH. A quantitative and qualitative study of the factors influencing suicidal ideation among college students[D]. Guangzhou: Jinan University, 2009.
    [24]
    吴茵琪. 粤港两地大学生心理健康的状况、影响因素及其比较研究[D]. 广州: 广州中医药大学, 2020.

    Wu YQ. A comparative study on the status, influencing factors and mental health of college students in Guangdong and Hong Kong[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2020.
    [25]
    况利, 徐小明, 曾琪. 机器学习用于自杀研究的综述[J]. 山东大学学报(医学版), 2022, 60(4): 10-16. DOI: 10.6040/j.issn.1671-7554.0.2021.0175.

    Kuang L, Xu XM, Zeng Q. A review of machine learning for suicide research[J]. Journal of Shandong University (Health Science), 2022, 60(4): 10-16. DOI: 10.6040/j.issn.1671-7554.0.2021.0175.
    [26]
    Just MA, Pan L, Cherkassky VL, et al. Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth[J]. Nat Hum Behav, 2017, 1: 911-919. DOI: 10.1038/s41562-017-0234-y.
    [27]
    Walsh CG, Ribeiro JD, Franklin JC. Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning[J]. J Child Psychol Psychiatry, 2018, 59(12): 1261-1270. DOI: 10.1111/jcpp.12916.
    [28]
    Metzger MH, Tvardik N, Gicquel Q, et al. Use of emergency department electronic medical records for automated epidemiological surveillance of suicide attempts: a French pilot study[J]. Int J Methods Psychiatr Res, 2017, 26(2): e1522. DOI: 10.1002/mpr.1522.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(5)

    Article Metrics

    Article views (403) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return