Citation: | LU Zhenzhen, ZHAO Enhui, HUANG Lihong. Evaluation of the control effect for measured confounders between propensity score matching and disease risk score matching[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(2): 241-248. doi: 10.16462/j.cnki.zhjbkz.2024.02.018 |
[1] |
Paul, R, Rosenbaum, et al. The central role of the propensity score in observational studies for causal effects [J]. Biometrika, 1983, 70(1): 41-55. DOI: 10.1093/biomet/70.1.41.
|
[2] |
Miettinen OS. Stratification by a multivariate confounder score [J]. Am J Epidemiol, 1976, 104(6): 609-620. DOI: 10.1080/0002889768507553.
|
[3] |
Arbogast PG, Ray WA. Performance of disease risk scores, propensity scores, and traditional multivariable outcome regression in the presence of multiple confounders [J]. Am J Epidemiol, 2011, 174(5): 613-620. DOI: 10.1093/aje/kwr143.
|
[4] |
Wang Y, Cai H, Li C, et al. Optimal caliper width for propensity score matching of three treatment groups: a Monte Carlo study [J]. PLoS One, 2013, 8(12): e81045. DOI: 10.1371/journal.pone.0081045.
|
[5] |
Elze MC, Gregson J, Baber U, et al. Comparison of propensity score methods and covariate adjustment [J]. J Am Coll Cardiol, 2017, 69(3): 345-347. DOI: 10.1016/j.jacc.2016.10.060.
|
[6] |
Benedetto U, Head SJ, Angelini GD, et al. Statistical primer: propensity score matching and its alternatives [J]. Eur J Cardiothorac Surg, 2018, 53(6): 1112-1117. DOI: 10.1093/ejcts/ezy167.
|
[7] |
Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies [J]. Pharm Stat, 2011, 10(2): 150-161. DOI: 10.1002/pst.433.
|
[8] |
黄丽红, 王永吉, 王素珍, 等. 倾向性评分方法及其规范化应用的统计学共识CSCO生物统计学专家委员会RWS方法学组[J]. 中国卫生统计, 2020, 37(6): 952-958. DOI: 10.3969/j.issn.1002-3674.2020.06.041.
Huang LH, Wang YJ, Wang SZ, et al. Statistical consensus on propensity score method and its standardized application [J]. Chinese Journal of Health Statistics, 2020, 37(6): 952-958. DOI: 10.3969/j.issn.1002-3674.2020.06.041.
|
[9] |
Connolly JG, Gagne JJ. Comparison of calipers for matching on the disease risk score [J]. Am J Epidemiol, 2016, 183(10): 937-948. DOI: 10.1093/aje/kwv302.
|
[10] |
黄丽红, 赵杨, 魏永越, 等. 如何控制观察性疗效比较研究中的混杂因素: (一)已测量混杂因素的统计学分析方法[J]. 中华流行病学杂志, 2019, 40(12): 1645-1649. DOI: 10.3760/cma.j.issn.0254-6450.2019.10.024.
Huang LH, Zhao Y, Wei YY, et al. Confounder adjustment in observational comparative effectiveness researches: (1) statistical adjustment approaches for measured confounder [J]. Chin J Epidemiol, 2019, 40(12): 1645-1649. DOI: 10.3760/cma.j.issn.0254-6450.2019.10.024.
|
[11] |
Zhang D, Kim J. Use of propensity score and disease risk score for multiple treatments with time-to-event outcome: a simulation study [J]. J Biopharm Stat, 2019, 29(6): 1103-1115. DOI: 10.1080/10543406.2019.1584205.
|
[12] |
Wyss R, Ellis AR, Brookhart MA, et al. Matching on the disease risk score in comparative effectiveness research of new treatments [J]. Pharmacoepidemiol Drug Saf, 2015, 24(9): 951-961. DOI: 10.1002/pds.3810.
|
[13] |
Desai RJ, Glynn RJ, Wang S, et al. Performance of disease risk score matching in nested case-control studies: a simulation study [J]. Am J Epidemiol, 2016, 183(10): 949-957. DOI: 10.1093/aje/kwv269.
|
[14] |
Li Y, Li L. Propensity score analysis methods with balancing constraints: a monte c arlo study [J]. Stat Methods Med Res, 2021, 30(4): 1119-1142. DOI: 10.1177/0962280220983512.
|
[15] |
黄丽红, 陈峰. 倾向性评分方法及其应用[J]. 中华预防医学杂志, 2019, 53(7): 752-756. DOI: 10.3760/cma.j.issn.0253-9624.2019.07.017.
Huang LH, Chen F. The propensity score method and its application [J]. Chin J Prev Med, 2019, 53(7): 752-756. DOI: 10.3760/cma.j.issn.0253-9624.2019.07.017.
|
[16] |
Reiffel JA. Propensity-score matching: the "devil is in the details" where more may be hidden than you know [J]. Am J Med, 2020, 133(2): 178-181. DOI: 10.1016/j.amjmed.2019.08.055.
|
1. | 郝杨,秦艳梅,毛美琦,赵雅宁,刘瑶,韩影. 基于贝叶斯网络模型的社区老年人认知衰弱的影响因素分析. 护理学报. 2024(19): 12-18 . ![]() |