Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 28 Issue 5
May  2024
Turn off MathJax
Article Contents
TIAN Chang, SHAO Chaojie, LI Mengxue, ZHOU Lin, HUANG Hui, CHU Fengjen, MU Min, YE Dongqing. Application of microfluidic chips in the study of pneumoconiosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(5): 591-595. doi: 10.16462/j.cnki.zhjbkz.2024.05.016
Citation: TIAN Chang, SHAO Chaojie, LI Mengxue, ZHOU Lin, HUANG Hui, CHU Fengjen, MU Min, YE Dongqing. Application of microfluidic chips in the study of pneumoconiosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(5): 591-595. doi: 10.16462/j.cnki.zhjbkz.2024.05.016

Application of microfluidic chips in the study of pneumoconiosis

doi: 10.16462/j.cnki.zhjbkz.2024.05.016
Funds:

Anhui Provincial Natural Science Foundation 2108085QH358

Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology 13200387

Natural Science Research Project of Anhui Educational Committee 2022AH050829

University-level Key Projects of Anhui University of Science and Technology xjzd2020-20

More Information
  • Corresponding author: TIAN Chang, E-mail: tianchang984@163.com; YE Dongqing, E-mail: ydqph@aust.edu.cn
  • Received Date: 2023-06-28
  • Rev Recd Date: 2023-11-29
  • Available Online: 2024-06-05
  • Publish Date: 2024-05-10
  • Pneumoconiosis is a serious occupational disease that threats human health in physical and mental. Studying its mechanism is of great significance in the prevention, diagnosis, and treatment of pneumoconiosis. However, there are many technical difficulties in the traditional in-vivo and in-vitro research methods, which are unable to reproduce the three-dimensional lung tissue and the physical and biological microenvironment of the lung in-vivo, and it is difficult to conduct real-time dynamic observation of the physiological and biochemical processes, which restricts the research on the pathological mechanism of pneumoconiosis. Microfluidic chips, with their ability to manipulate cells, particles and solutions in time and space, provide new ideas for simulating the state of the lungs and reconstructing their physical and biological microenvironment. Starting from the interaction between dust particles and the lungs, this article reviews the deposition characteristics of dust particles in the lungs, the physiological and biochemical changes caused by dust particles on the lungs, and the research progress in the interaction between dust particles and pneumoconiosis using microfluidic chips.
  • loading
  • [1]
    Zheng WC, Xie RX, Liang XP, et al. Fabrication of biomaterials and biostructures based on microfluidic manipulation[J]. Small, 2022, 18(16): 2105867. DOI: 10.1002/smll.202105867.
    [2]
    Ayuso JM, Virumbrales-Muñoz M, Lang JM, et al. A role for microfluidic systems in precision medicine[J]. Nat Commun, 2022, 13: 3086. DOI: 10.1038/s41467-022-30384-7.
    [3]
    Zhao L, Gao MQ, Niu YB, et al. Flow-rate and particle-size insensitive inertial focusing in dimension-confined ultra-low aspect ratio spiral microchannel[J]. Sens Actuat B Chem, 2022, 369: 132284. DOI: 10.1016/j.snb.2022.132284.
    [4]
    Liu WM, Hu R, Han K, et al. Parallel and large-scale antitumor investigation using stable chemical gradient and heterotypic three-dimensional tumor coculture in a multi-layered microfluidic device[J]. Biotechnol J, 2021, 16(10): e2000655. DOI: 10.1002/biot.202000655.
    [5]
    Zhuang JJ, Xia LP, Zou ZY, et al. Recent advances in integrated microfluidics for liquid biopsies and future directions[J]. Biosens Bioelectron, 2022, 217: 114715. DOI: 10.1016/j.bios.2022.114715.
    [6]
    Xie Y, Li HM, Chen FM, et al. Clustered regularly interspaced short palindromic repeats-based microfluidic system in infectious diseases diagnosis: current status, challenges, and perspectives[J]. Adv Sci, 2022, 9(34): 2204172. DOI: 10.1002/advs.202204172.
    [7]
    Zhou G, Xu Z, Chen GS, et al. Hydrophobic/oleophobic nanofibrous filter media with bead-on-string structure for efficient personal protection of dust in mines[J]. Environ Res, 2023, 226: 115699. DOI: 10.1016/j.envres.2023.115699.
    [8]
    Mu M, Li B, Zou YJ, et al. Coal dust exposure triggers heterogeneity of transcriptional profiles in mouse pneumoconiosis and Vitamin D remedies[J]. Part Fibre Toxicol, 2022, 19(1): 7. DOI: 10.1186/s12989-022-00449-y.
    [9]
    Wang WY, Mu M, Zou YJ, et al. Glycogen metabolism reprogramming promotes inflammation in coal dust-exposed lung[J]. Ecotoxicol Environ Saf, 2022, 242: 113913. DOI: 10.1016/j.ecoenv.2022.113913.
    [10]
    Upaassana VT, Ghosh S, Chakraborty A, et al. Highly sensitive lab on a chip (loc) immunoassay for early diagnosis of respiratory disease caused by respirable crystalline silica (RCS)[J]. Anal Chem, 2019, 91(10): 6652-6660. DOI: 10.1021/acs.analchem.9b00582.
    [11]
    Wang DM, Liang RY, Yang M, et al. Incidence and disease burden of coal workers' pneumoconiosis worldwide, 1990-2019: evidence from the Global Burden of Disease Study 2019[J]. Eur Respir J, 2021, 58(5): 2101669. DOI: 10.1183/13993003.01669-2021.
    [12]
    中华人民共和国国家卫生健康委员会. 国家卫生健康委员会2023年6月15日新闻发布会文字实录[EB/OL]. (2023-06-15)[2023-06-26]. http://www.nhc.gov.cn/xcs/s3574/202306/b5d0b329c886457ab250c79e21f8651b.shtml.
    [13]
    Honma K, Abraham JL, Chiyotani K, et al. Proposed criteria for mixed-dust pneumoconiosis: definition, descriptions, and guidelines for pathologic diagnosis and clinical correlation[J]. Hum Pathol, 2004, 35(12): 1515-1523. DOI: 10.1016/j.humpath.2004.09.008.
    [14]
    Shekarian Y, Rahimi E, Rezaee M, et al. Respirable coal mine dust: a review of respiratory deposition, regulations, and characterization[J]. Minerals, 2021, 11(7): 696. DOI: 10.3390/min11070696.
    [15]
    Patra AK, Gautam S, Kumar P. Emissions and human health impact of particulate matter from surface mining operation—a review[J]. Environ Technol Innov, 2016, 5: 233-249. DOI: 10.1016/j.eti.2016.04.002.
    [16]
    Tao HH, Zhao H, Ge DY, et al. Necroptosis in pulmonary macrophages promotes silica-induced inflammation and interstitial fibrosis in mice[J]. Toxicol Lett, 2022, 355: 150-159. DOI: 10.1016/j.toxlet.2021.11.015.
    [17]
    侯润苏, 田燕歌, 李建生. 尘肺病动物和细胞模型研究进展[J]. 中华劳动卫生职业病杂志, 2022, 40(7): 547-552. DOI: 10.3760/cma.j.cn121094-20210425-00230.

    Hou RS, Tian YG, Li JS. Research progress on animal and cell models of pneumoconiosis[J]. Chin J Ind Hyg Occup Dis, 2022, 40(7): 547-552. DOI: 10.3760/cma.j.cn121094-20210425-00230.
    [18]
    Caballero-Gallardo K, Olivero-Verbel J. Mice housed on coal dust-contaminated sand: a model to evaluate the impacts of coal mining on health[J]. Toxicol Appl Pharmacol, 2016, 294: 11-20. DOI: 10.1016/j.taap.2016.01.009.
    [19]
    Carneiro PJ, Clevelario AL, Padilha GA, et al. Bosutinib therapy ameliorates lung inflammation and fibrosis in experimental silicosis[J]. Front Physiol, 2017, 8: 159. DOI: 10.3389/fphys.2017.00159.
    [20]
    Castellani S, Di Gioia S, di Toma L, et al. Human cellular models for the investigation of lung inflammation and mucus production in cystic fibrosis[J]. Anal Cell Pathol (Amst), 2018, 2018: 3839803. DOI: 10.1155/2018/3839803.
    [21]
    Yu F, Choudhury D. Microfluidic bioprinting for organ-on-a-chip models[J]. Drug Discov Today, 2019, 24(6): 1248-1257. DOI: 10.1016/j.drudis.2019.03.025.
    [22]
    Zhang F, Liu WM, Zhou SS, et al. Investigation of environmental pollutant-induced lung inflammation and injury in a 3d coculture-based microfluidic pulmonary alveolus system[J]. Anal Chem, 2020, 92(10): 7200-7208. DOI: 10.1021/acs.analchem.0c00759.
    [23]
    Humayun M, Chow CW, Young EWK. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions[J]. Lab Chip, 2018, 18(9): 1298-1309. DOI: 10.1039/c7lc01357d.
    [24]
    Zamprogno P, Wüthrich S, Achenbach S, et al. Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane[J]. Commun Biol, 2021, 4(1): 168. DOI: 10.1038/s42003-021-01695-0.
    [25]
    Yang XY, Li KY, Zhang X, et al. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing[J]. Lab Chip, 2018, 18(3): 486-495. DOI: 10.1039/c7lc01224a.
    [26]
    Berg EJ, Weisman JL, Oldham MJ, et al. Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV)[J]. J Biomech, 2010, 43(6): 1039-1047. DOI: 10.1016/j.jbiomech.2009.12.019.
    [27]
    Dong J, Qiu Y, Lv HM, et al. Investigation on microparticle transport and deposition mechanics in rhythmically expanding alveolar chip[J]. Micromachines, 2021, 12(2): 184. DOI: 10.3390/mi12020184.
    [28]
    Jabbar F, Kim YS, Lee SH. Biological influence of pulmonary disease conditions induced by particulate matter on microfluidic lung chips[J]. BioChip J, 2022, 16(3): 305-316. DOI: 10.1007/s13206-022-00068-x.
    [29]
    Zhang M, Xu C, Jiang L, et al. A 3D human lung-on-a-chip model for nanotoxicity testing[J]. Toxicol Res, 2018, 7(6): 1048-1060. DOI: 10.1039/c8tx00156a.
    [30]
    Huh D, Matthews BD, Mammoto A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986): 1662-1668. DOI: 10.1126/science.1188302.
    [31]
    Doryab A, Taskin MB, Stahlhut P, et al. A bioinspired in vitro lung model to study particokinetics of nano-/microparticles under cyclic stretch and air-liquid interface conditions[J]. Front Bioeng Biotech, 2021, 9: 616830. DOI: 10.3389/fbioe.2021.616830.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (101) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return