Advanced Search

CN 34-1304/RISSN 1674-3679

YANG Jun, WANG Le, SHI Chun-lei, HUANG Hui-yao, WANG Yu-ting, LI Jiang, ZHAO Jian-jun, QU Chun-feng, DAI Min, YANG Li, SHI Ju-fang. Economic burden of liver cancer in China during 1996-2015:a systematic review[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2017, 21(8): 835-840,851. doi: 10.16462/j.cnki.zhjbkz.2017.08.020
Citation: YANG Wenyan, LI Jing, TIAN Jing, YAN Zhijia, YANG Hong, YAN Jingjing, WANG Yajing, ZHANG Yanbo. Causal association study of relative fat mass index and risk of all-cause death in middle-aged and elderly women with hypertension[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(10): 1149-1155. doi: 10.16462/j.cnki.zhjbkz.2024.10.006

Causal association study of relative fat mass index and risk of all-cause death in middle-aged and elderly women with hypertension

doi: 10.16462/j.cnki.zhjbkz.2024.10.006
Funds:

National Natural Science Foundation of China 82173631

Special Project of Transformation of Scientific and Technological Achievements of Shanxi Province 202104021301063

Special Project of Science and Technology Innovation Talent Team of Shanxi Province 202204051001026

More Information
  • Corresponding author: ZHANG Yanbo, E-mail: sxmuzyb@126.com
  • Received Date: 2024-06-07
  • Rev Recd Date: 2024-09-25
  • Available Online: 2024-12-11
  • Publish Date: 2024-10-10
  •   Objective  This study aims to investigate the causal correlation between the relative fat mass index (RFM) and the risk of all-cause mortality among middle-aged and elderly Chinese women with hypertension. Additionally, it seeks to compare the causal correlation between RFM and the risk of all-cause mortality with that of BMI and the risk of all-cause mortality.  Methods  Based on the China health and retirement longitudinal study (CHARLS) database, this study took 1 958 participants who met the inclusion and exclusion criteria as research subjects.the study plotted restricted cubic splines (RCS) to determine the cut-off value for RFM and subsequently grouped participants accordingly. Logistic regression models were constructed to analyze the correlation of RFM groups and BMI groups in relation to the risk of all-cause mortality. Furthermore, the average causal effects of them on the risk of all-cause mortality will would be calculated by employing double robust estimation.  Results  The Logistic regression models showed that compared with the 39.30≤RFM≤42.10 group, both the RFM>42.10 group and the RFM < 39.30 group would increase the risk of all-cause mortality in patients. In comparison with the normal BMI group, the thin group increased the risk of all-cause mortality, while the overweight and obese groups reduced the risk. The double robust estimation revealed that in comparison to the 39.30≤RFM≤42.10 group, both the RFM>42.10 group and the RFM < 39.30 group would increase the risk of all-cause mortality, with average treatment effect (ATE) values of 4% respectively (95% CI: 0.006-0.074) and 12% (95% CI: 0.077-0.163). However, the other groups didn′t demonstrate a causal correlation with the risk of all-cause mortality when comparing with the normal BMI group.  Conclusions  There is a causal correlation between RFM and all-cause mortality risk in middle-aged and elderly female with hypertension patients in China. Reasonable control of RFM may help reduce the risk of all-cause mortality in these patients.
  • [1]
    Gui JF, Li YQ, Liu HY, et al. Obesity-and lipid-related indices as a risk factor of hypertension in mid-aged and elderly Chinese: a cross-sectional study[J]. BMC Geriatr, 2024, 24(1): 77. DOI: 10.1186/s12877-023-04650-2.
    [2]
    Cifkova R, Fodor G, Wohlfahrt P. Changes in hypertension prevalence, awareness, treatment, and control in high-, middle-, and low-income countries: an update[J]. Curr Hypertens Rep, 2016, 18(8): 62. DOI: 10.1007/s11906-016-0669-y.
    [3]
    GBD Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017[J]. Lancet, 2018, 392(10159): 1923-1994. DOI: 10.1016/S0140-6736(18)32225-6.
    [4]
    Michos ED, Minhas AS, Mihailidou AS. Hypertension in women[M]. Amsterdam: Elsevier, 2024: 58-69.
    [5]
    D'Ignazio T, Grand'Maison S, Bérubé LF, et al. Hypertension across a woman's lifespan[J]. Maturitas, 2023, 168: 84-91. DOI: 10.1016/j.maturitas.2022.11.006.
    [6]
    Lokpo SY, Ametefe CY, Osei-Yeboah J, et al. Performance of body adiposity index and relative fat mass in predicting bioelectric impedance analysis-derived body fat percentage: a cross-sectional study among patients with type 2 diabetes in the Ho Municipality, Ghana[J]. Biomed Res Int, 2023, 2023: 1500905. DOI: 10.1155/2023/1500905.
    [7]
    Tutor AW, Lavie CJ, Kachur S, et al. Updates on obesity and the obesity paradox in cardiovascular diseases[J]. Prog Cardiovasc Dis, 2023, 78: 2-10. DOI: 10.1016/j.pcad.2022.11.013.
    [8]
    Woolcott OO, Bergman RN. Relative fat mass (RFM) as a new estimator of whole-body fat percentage ─ a cross-sectional study in American adult individuals[J]. Sci Rep, 2018, 8(1): 10980. DOI: 10.1038/s41598-018-29362-1.
    [9]
    Zhao YH, Hu YS, Smith JP, et al. Cohort profile: the China health and retirement longitudinal study (CHARLS)[J]. Int J Epidemiol, 2014, 43(1): 61-68. DOI: 10.1093/ije/dys203.
    [10]
    Qian JH, Li NX, Ren XH. Obesity and depressive symptoms among Chinese people aged 45 and over[J]. Sci Rep, 2017, 7: 45637. DOI: 10.1038/srep45637.
    [11]
    Jambart I. Relative fat mass, a new tool for measuring obesity, could predict the complications of type 2 diabetes[J]. Endocrinol Disord, 2021, 5(3): 1-8. DOI: 10.31579/2692-9759/074.
    [12]
    Woolcott OO, Bergman RN. Defining cutoffs to diagnose obesity using the relative fat mass (RFM): association with mortality in NHANES 1999-2014[J]. Int J Obes, 2020, 44(6): 1301-1310. DOI: 10.1038/s41366-019-0516-8.
    [13]
    Dominguez LJ, Gea A, Ruiz-Estigarribia L, et al. Low dietary magnesium and overweight/obesity in a mediterranean population: a detrimental synergy for the development of hypertension. the sun project[J]. Nutrients, 2020, 13(1): 125. DOI: 10.3390/nu13010125.
    [14]
    Basile-Alvarez MR, Fermin C, Guerra EC, et al. Systematic evaluation of anthropometry-based adiposity measures for prediction of all-cause and cardiovascular-specific mortality in 155 000 Mexican adults[J]. J Am Coll Cardiol, 2024, 83(13): 2000. DOI: 10.1016/S0735-1097(24)03990-1.
    [15]
    Yu P, Huang T, Hu SL, et al. Predictive value of relative fat mass algorithm for incident hypertension: a 6-year prospective study in Chinese population[J]. BMJ Open, 2020, 10(10): e038420. DOI: 10.1136/bmjopen-2020-038420.
    [16]
    Guo XH, Xu YF, He HR, et al. Visceral fat reduction is positively associated with blood pressure reduction in overweight or obese males but not females: an observational study[J]. Nutr Metab, 2019, 16: 1-8. DOI: 10.1186/s12986-019-0369-0.
  • Relative Articles

  • Cited by

    Periodical cited type(14)

    1. 崔璐,徐梦,张笑琳,梁翠,胡晓晔,王汉彬,黄家艺,杨克虎,李秀霞. 疾病负担系统评价研究的方法学探析. 中国循证医学杂志. 2025(01): 88-94 .
    2. 陈光佩,黎伟康,戴佩玲,吴绍峰,杨巧红,许晓伍,刘坤东. 幽门螺杆菌对肝癌HepG2细胞C-Met基因表达的影响. 解剖学研究. 2024(06): 573-578 .
    3. 杨雷,张希,刘硕,李慧超,李晴雨,李浩鑫,王宁,季加孚. 2014-2019年北京城市癌症早诊早治项目人群肝癌筛查结果分析. 中华肿瘤防治杂志. 2023(23): 1420-1425+1443 .
    4. 严柳英,黎建绪,姚忠强,周波. 成本效果分析在肝细胞癌治疗中的应用研究进展. 广西医学. 2023(20): 2514-2518 .
    5. 殷明华,蔡美和,赵林,蔡美奎,雷飞飞,李芳,雷旭,谭华炳. 鄂西北地区原发性肝癌中医证型特点和致病原因分析. 中国医学创新. 2022(17): 149-153 .
    6. 刘利群,刘晓燕,刘阳,万霞,杨功焕. 改善医保数据质量的标准化流程建设:2013-2015年河南省某县新型农村合作医疗数据质量的评价和改进. 疾病监测. 2021(03): 261-269 .
    7. 张敏,林瑾仪,马元吉,程蕾蕾. 基于疾病经济负担视角开展肿瘤心脏病学的探索. 中国卫生质量管理. 2020(03): 19-22 .
    8. 温克寒,杨露露,王德斌,柴静. 2015—2017年安徽省农村肝癌的住院医疗费用及经济负担分析. 泰山医学院学报. 2020(07): 509-515 .
    9. Haike Lei,Lin Lei,Jufang Shi,Yongzhong Wu,Ling Liang,Huiyao Huang,Mei He,Fangzhou Bai,Maomao Cao,Hui Qiu,Yuting Wang,Chengcheng Liu,Jia Du,Hong Wang,Yan Zhang,Mengdi Cao,Ji Peng,Ni Li,Chunfeng Qu,Min Dai,Wanqing Chen,Jie He. No expenditure difference among patients with liver cancer at stage I-IV: Findings from a multicenter cross-sectional study in China. Chinese Journal of Cancer Research. 2020(04): 516-530 .
    10. 于哲,满晓玮,蒋艳,赵丽颖,杨雨晨,陈姝婧,热娜·阿希木,高雅,蔡东霞,程薇. 北京市5487例肝癌患者住院费用及影响因素分析. 中国卫生统计. 2020(05): 748-751 .
    11. 曹梦迪,王红,石菊芳,白方舟,曹毛毛,王宇婷,严鑫鑫,王乐,黄振,任建松,赵建军,代敏,曲春枫,陈万青. 中国人群肝癌疾病负担:多数据源证据更新整合分析. 中华流行病学杂志. 2020(11): 1848-1858 .
    12. 白方舟,刘成成,王宇婷,王红,曹毛毛,严鑫鑫,朱娟,王乐,黄慧瑶,张业繁,任建松,王勇,赵建军,张凯,李霓,曲春枫,代敏,陈万青,石菊芳. 我国肝癌患者年例均费用的全病程视角分析. 中华健康管理学杂志. 2019(05): 387-393 .
    13. 张业繁,郭兰伟,白方舟,黄振,黄慧瑶,刘成成,赵建军,石菊芳,代敏. 中国肝癌患者2002~2011年日均医疗费用趋势分析:多中心回顾性调查. 中国循证医学杂志. 2018(05): 434-441 .
    14. 白方舟,王乐,王宇婷,黄慧瑶,刘成成,朱娟,任建松,赵建军,韩优莉,曲春枫,代敏,石菊芳. 中国肝癌筛查卫生经济学研究的系统评价. 中国循证医学杂志. 2018(05): 442-449 .

    Other cited types(8)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (161) PDF downloads(13) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return