Citation: | FANG Xinyu, FAN Yinguang, YANG Shigui, YE Dongqing. Epidemiological trends, influencing factors and response strategies for emerging infectious diseases[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(1): 1-7. doi: 10.16462/j.cnki.zhjbkz.2025.01.001 |
[1] |
Armitage C. The high burden of infectious disease[J]. Nature, 2021, 598: S9. DOI: 10.1038/d41586-021-02909-5.
|
[2] |
Short KR, Kedzierska K, van de Sandt CE. Back to the future: lessons learned from the 1918 influenza pandemic[J]. Front Cell Infect Microbiol, 2018, 8: 343. DOI: 10.3389/fcimb.2018.00343.
|
[3] |
Akin L, Gözel MG. Understanding dynamics of pandemics[J]. Turk J Med Sci, 2020, 50(SI-1): 515-519. DOI: 10.3906/sag-2004-133.
|
[4] |
Franco-Paredes C, Hernandez-Ramos I, Del Rio C, et al. H1N1 influenza pandemics: comparing the events of 2009 in Mexico with those of 1976 and 1918-1919[J]. Arch Med Res, 2009, 40(8): 669-672. DOI: 10.1016/j.arcmed.2009.10.004.
|
[5] |
朱波, 郎少伟, 边勇, 等. 我国新发蜱媒传染病流行风险及应对措施[J]. 中国国境卫生检疫杂志, 2024, 47(4): 431-435. DOI: 10.16408/j.1004-9770.2024.04.023.
Zhu B, Lang SW, Bian Y, et al. Epidemic risk and response measures of novel tick-borne infectious diseases in China[J]. Chinese Frontier Health Quarantine, 2024, 47(4): 431-435. DOI: 10.16408/j.1004-9770.2024.04.023.
|
[6] |
Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor[J]. Nature, 2013, 503(7477): 535-538. DOI: 10.1038/nature12711.
|
[7] |
Cui PF, Shi JZ, Wang CC, et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China[J]. Emerg Microbes Infect, 2022, 11(1): 1693-1704. DOI: 10.1080/22221751.2022.2088407.
|
[8] |
Smith GJD, Vijaykrishna D, Bahl J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic[J]. Nature, 2009, 459(7250): 1122-1125. DOI: 10.1038/nature08182.
|
[9] |
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses[J]. Nat Rev Microbiol, 2019, 17(3): 181-192. DOI: 10.1038/s41579-018-0118-9.
|
[10] |
To KK, Sridhar S, Chiu KH, et al. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic[J]. Emerg Microbes Infect, 2021, 10(1): 507-535. DOI: 10.1080/22221751.2021.1898291.
|
[11] |
Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention[J]. Signal Transduct Target Ther, 2022, 7(1): 373. DOI: 10.1038/s41392-022-01215-4.
|
[12] |
Zarocostas J. Monkeypox PHEIC decision hoped to spur the world to act[J]. Lancet, 2022, 400(10349): 347. DOI: 10.1016/S0140-6736(22)01419-2.
|
[13] |
陶春爱, 唐小兰, 甘永新, 等. 新发病毒性传染病的流行特点及其疫苗研究[J]. 医学动物防制, 2018, 34(4): 358-360. DOI: 10.7629/yxdwfz201804015.
Tao CA, Tang XL, Gan YX, et al. Epidemiological characteristics and vaccine research of emerging infectious viral diseases[J]. J Med Pest Contr, 2018, 34(4): 358-360. DOI: 10.7629/yxdwfz201804015.
|
[14] |
McArthur DB. Emerging infectious diseases[J]. Nurs Clin North Am, 2019, 54(2): 297-311. DOI: 10.1016/j.cnur.2019.02.006.
|
[15] |
Semenza JC, Rocklöv J, Penttinen P, et al. Observed and projected drivers of emerging infectious diseases in Europe[J]. Ann N Y Acad Sci, 2016, 1382(1): 73-83. DOI: 10.1111/nyas.13132.
|
[16] |
赵月峨, 王淑兰, 史套兴. 新发传染病出现的机制和影响因素分析[J]. 解放军预防医学杂志, 2008, 26(3): 157-159. DOI: 10.3969/j.issn.1001-5248.2008.03.001.
Zhao YE, Wang SL, Shi TX. Analysis of the mechanism and influencing factors of the emergence of emerging infectious diseases[J]. J Prev Med Chin People Liber Army, 2008, 26(3): 157-159. DOI: 10.3969/j.issn.1001-5248.2008.03.001.
|
[17] |
Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift[J]. Vaccine, 2007, 25(39-40): 6852-6862. DOI: 10.1016/j.vaccine.2007.07.027.
|
[18] |
Xiong XL, Martin SR, Haire LF, et al. Receptor binding by an H7N9 influenza virus from humans[J]. Nature, 2013, 499(7459): 496-499. DOI: 10.1038/nature12372.
|
[19] |
Dortmans JM, Dekkers J, Ambepitiya Wickramasinghe IN, et al. Adaptation of novel H7N9 influenza A virus to human receptors[J]. Sci Rep, 2013, 3: 3058. DOI: 10.1038/srep03058.
|
[20] |
Phanich J, Rungrotmongkol T, Kungwan N, et al. Role of R292K mutation in influenza H7N9 neuraminidase toward oseltamivir susceptibility: MD and MM/PB(GB)SA study[J]. J Comput Aided Mol Des, 2016, 30(10): 917-926. DOI: 10.1007/s10822-016-9981-5.
|
[21] |
Escudero-Pérez B, Lalande A, Mathieu C, et al. Host-pathogen interactions influencing zoonotic spillover potential and transmission in humans[J]. Viruses, 2023, 15(3): 599. DOI: 10.3390/v15030599.
|
[22] |
Liao HY, Lyon CJ, Ying BW, et al. Climate change, its impact on emerging infectious diseases and new technologies to combat the challenge[J]. Emerg Microbes Infect, 2024, 13(1): 2356143. DOI: 10.1080/22221751.2024.2356143.
|
[23] |
Carlson CJ, Albery GF, Merow C, et al. Climate change increases cross-species viral transmission risk[J]. Nature, 2022, 607(7919): 555-562. DOI: 10.1038/s41586-022-04788-w.
|
[24] |
Li Y, Reeves RM, Wang X, et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis[J]. Lancet Glob Health, 2019, 7(8): e1031-e1045. DOI: 10.1016/S2214-109X(19)30264-5.
|
[25] |
Mordecai EA, Caldwell JM, Grossman MK, et al. Thermal biology of mosquito-borne disease[J]. Ecol Lett, 2019, 22(10): 1690-1708. DOI: 10.1111/ele.13335.
|
[26] |
Centers for Disease Control and Prevention. Increase in reported coccidioidomycosis: United States, 1998-2011[J]. MMWR Morb Mortal Wkly Rep, 2013, 62(12): 217-221.
|
[27] |
孟祥旭, 张晓柯. 人口流动对传染病传播的影响研究[J]. 中国西部, 2022, (3): 49-57.
Meng XX, Zhang XK. Research on the impact of population movement on the spread of infectious diseases[J]. West China, 2022, (3): 49-57.
|
[28] |
MacPherson DW, Gushulak BD, Baine WB, et al. Population mobility, globalization, and antimicrobial drug resistance[J]. Emerg Infect Dis, 2009, 15(11): 1727-1732. DOI: 10.3201/eid1511.090419.
|
[29] |
Taylor JL, Tuttle J, Pramukul T, et al. An outbreak of cholera in Maryland associated with imported commercial frozen fresh coconut milk[J]. J Infect Dis, 1993, 167(6): 1330-1335. DOI: 10.1093/infdis/167.6.1330.
|
[30] |
Tauxe RV. Emerging foodborne pathogens[J]. Int J Food Microbiol, 2002, 78(1-2): 31-41. DOI: 10.1016/s0168-1605(02)00232-5.
|
[31] |
Tang GL, Liu ZW, Chen DH. Human coronaviruses: origin, host and receptor[J]. J Clin Virol, 2022, 155: 105246. DOI: 10.1016/j.jcv.2022.105246.
|
[32] |
Panel OHHE, Adisasmito WB, Almuhairi S, et al. One Health: a new definition for a sustainable and healthy future[J]. PLoS Pathog, 2022, 18(6): e1010537. DOI: 10.1371/journal.ppat.1010537.
|
[33] |
Sokolow SH, Nova N, Pepin KM, et al. Ecological interventions to prevent and manage zoonotic pathogen spillover[J]. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1782): 20180342. DOI: 10.1098/rstb.2018.0342.
|
[34] |
Wu T, Perrings C, Shang CW, et al. Protection of wetlands as a strategy for reducing the spread of avian influenza from migratory waterfowl[J]. Ambio, 2020, 49(4): 939-949. DOI: 10.1007/s13280-019-01238-2.
|
[35] |
Wu T. The socioeconomic and environmental drivers of the COVID-19 pandemic: a review[J]. Ambio, 2021, 50(4): 822-833. DOI: 10.1007/s13280-020-01497-4.
|
[36] |
Jesudason T. A new one health joint action plan[J]. Lancet Infect Dis, 2022, 22(12): 1673. DOI: 10.1016/S1473-3099(22)00751-4.
|
[37] |
Kumar M, Joshi M, Shah AV, et al. Wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness powered by early warning: a perspectives of temporal variations in SARS-CoV-2-RNA in Ahmedabad, India[J]. Sci Total Environ, 2021, 792: 148367. DOI: 10.1016/j.scitotenv.2021.148367.
|
[38] |
Hayman DTS, Adisasmito WB, Almuhairi S, et al. Developing one health surveillance systems[J]. One Health, 2023, 17: 100617. DOI: 10.1016/j.onehlt.2023.100617.
|
[39] |
Xu JG. Reverse microbial etiology: a research field for predicting and preventing emerging infectious diseases caused by an unknown microorganism[J]. J Biosaf Biosecur, 2019, 1(1): 19-21. DOI: 10.1016/j.jobb.2018.12.005.
|
[40] |
高晓薇, 宋浩, 仇华吉, 等. 用于传染病诊断的新型检测技术[J]. 中国兽医学报, 2024, 44(6): 1325-1335. DOI: 10.16303/j.cnki.1005-4545.2024.06.29.
Gao XW, Song H, Qiu HJ, et al. Cutting-edge detection technologies for the diagnosis of infectious diseases[J]. Chin J Vet Sci, 2024, 44(6): 1325-1335. DOI: 10.16303/j.cnki.1005-4545.2024.06.29.
|
[41] |
崔晓娴, 李云逸, 杨玉颖, 等. 纳米孔测序技术在病毒性传染病检测及研究中的应用[J]. 微生物与感染, 2020, 15(3): 179-185. DOI: 10.3969/j.issn.1673-6184.2020.03.007.
Cui XX, Li YY, Yang YY, et al. Application of nanopore sequencing technology in detection and study of viral infectious diseases[J]. J Microbes Infect, 2020, 15(3): 179-185. DOI: 10.3969/j.issn.1673-6184.2020.03.007.
|
[42] |
Gao DL, Guo XD, Yang Y, et al. Microfluidic chip and isothermal amplification technologies for the detection of pathogenic nucleic acid[J]. J Biol Eng, 2022, 16(1): 33. DOI: 10.1186/s13036-022-00312-w.
|
[43] |
Wan H, Cui JG, Yang GJ. Risk estimation and prediction of the transmission of coronavirus disease-2019 (COVID-19) in the mainland of China excluding Hubei province[J]. Infect Dis Poverty, 2020, 9(1): 116. DOI: 10.1186/s40249-020-00683-6.
|
[44] |
Xu TT, Yang RY. COVID-19 epidemic and public health measures in China[J]. J Epidemiol Glob Health, 2020, 10(2): 118-123. DOI: 10.2991/jegh.k.200421.001.
|
[45] |
Agbehadji IE, Awuzie BO, Ngowi AB, et al. Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing[J]. Int J Environ Res Public Health, 2020, 17(15): 5330. DOI: 10.3390/ijerph17155330.
|
[46] |
Ali Al Shehri S, Al-Sulaiman AM, Azmi S, et al. Bio-safety and bio-security: a major global concern for ongoing COVID-19 pandemic[J]. Saudi J Biol Sci, 2022, 29(1): 132-139. DOI: 10.1016/j.sjbs.2021.08.060.
|