Citation: | CAO Hongfei, ZHANG Jie, ZHANG Zixing, WEI Sitong, YE Dongqing, FANG Xinyu. Urate-lowering drugs and colorectal cancer risk: an observational study and Mendelian randomization analysis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(6): 621-627. doi: 10.16462/j.cnki.zhjbkz.2025.06.001 |
[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
|
[2] |
Abedizadeh R, Majidi F, Khorasani HR, et al. Colorectal cancer: a comprehensive review of carcinogenesis, diagnosis, and novel strategies for classified treatments[J]. Cancer Metastasis Rev, 2024, 43(2): 729-753. DOI: 10.1007/s10555-023-10158-3.
|
[3] |
Mi SY, Gong L, Sui ZQ. Friend or foe? an unrecognized role of uric acid in cancer development and the potential anticancer effects of uric acid-lowering drugs[J]. J Cancer, 2020, 11(17): 5236-5244. DOI: 10.7150/jca.46200.
|
[4] |
Mao LN, Guo C, Zheng S. Elevated urinary 8-oxo-7, 8-dihydro-2'-deoxyguanosine and serum uric acid are associated with progression and are prognostic factors of colorectal cancer[J]. Onco Targets Ther, 2018, 11: 5895-5902. DOI: 10.2147/OTT.S175112.
|
[5] |
Li WQ, Liu T, Siyin ST, et al. The relationship between serum uric acid and colorectal cancer: a prospective cohort study[J]. Sci Rep, 2022, 12(1): 16677. DOI: 10.1038/s41598-022-20357-7.
|
[6] |
Wei F, Nian Q, Zhao MY, et al. Natural products and mitochondrial allies in colorectal cancer therapy[J]. Biomed Pharmacother, 2023, 167: 115473. DOI: 10.1016/j.biopha.2023.115473.
|
[7] |
Fu Q, Liao HN, Li ZH, et al. Preventive effects of 13 different drugs on colorectal cancer: a network Meta-analysis[J]. Arch Med Sci, 2023, 19(5): 1428-1445. DOI: 10.5114/aoms/167480.
|
[8] |
Zhang HP. Pros and cons of mendelian randomization[J]. Fertil Steril, 2023, 119(6): 913-916. DOI: 10.1016/j.fertnstert.2023.03.029.
|
[9] |
Sanderson E, Glymour MM, Holmes MV, et al. Mendelian randomization[J]. Nat Rev Meth Primers, 2022, 2: 6. DOI: 10.1038/s43586-021-00092-5.
|
[10] |
Wang LJ, Mesa-Eguiagaray I, Campbell H, et al. A phenome-wide association and factorial Mendelian randomization study on the repurposing of uric acid-lowering drugs for cardiovascular outcomes[J]. Eur J Epidemiol, 2024, 39(8): 869-880. DOI: 10.1007/s10654-024-01138-0.
|
[11] |
Leung N, Yip K, Pillinger MH, et al. Lowering and raising serum urate levels: off-label effects of commonly used medications[J]. Mayo Clin Proc, 2022, 97(7): 1345-1362. DOI: 10.1016/j.mayocp.2022.02.027.
|
[12] |
Cicero AFG, Fogacci F, Cincione RI, et al. Clinical effects of xanthine oxidase inhibitors in hyperuricemic patients[J]. Med Princ Pract, 2021, 30(2): 122-130. DOI: 10.1159/000512178.
|
[13] |
Fujita K, Isozumi N, Zhu QN, et al. Unique binding sites of uricosuric agent dotinurad for selective inhibition of renal uric acid reabsorptive transporter URAT1[J]. J Pharmacol Exp Ther, 2024, 390(1): 99-107. DOI: 10.1124/jpet.124.002096.
|
[14] |
Lin SQ, Wu S, Zhao W, et al. TargetGene: a comprehensive database of cell-type-specific target genes for genetic variants[J]. Nucleic Acids Res, 2024, 52(D1): D1072-D1081. DOI: 10.1093/nar/gkad901.
|
[15] |
Pan HX, Liu ZH, Ma JH, et al. Genome-wide association study using whole-genome sequencing identifies risk loci for Parkinson's disease in Chinese population[J]. NPJ Parkinsons Dis, 2023, 9(1): 22. DOI: 10.1038/s41531-023-00456-6.
|
[16] |
Zhou SR, Butler-Laporte G, Nakanishi T, et al. A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity[J]. Nat Med, 2021, 27(4): 659-667. DOI: 10.1038/s41591-021-01281-1.
|
[17] |
Liu YN, Chen W, Yang RQ, et al. Effect of serum uric acid and gout on the incidence of colorectal cancer: a Meta-analysis[J]. Am J Med Sci, 2024, 367(2): 119-127. DOI: 10.1016/j.amjms.2023.11.013.
|
[18] |
Alam S, Doherty E, Ortega-Prieto P, et al. Membrane transporters in cell physiology, cancer metabolism and drug response[J]. Dis Model Mech, 2023, 16(11): dmm050404. DOI: 10.1242/dmm.050404.
|
[19] |
Qu Z, Wu KL, Qiu HT, et al. Genetic association between SLC22A12 variants and susceptibility to hyperuricemia: a Meta-analysis[J]. Genet Test Mol Biomarkers, 2022, 26(2): 81-95. DOI: 10.1089/gtmb.2021.0175.
|
[20] |
Wang L, Ye JP. Commentary: Gut microbiota reduce the risk of hyperuricemia and gout in the human body[J]. Acta Pharm Sin B, 2024, 14(1): 433-435. DOI: 10.1016/j.apsb.2023.11.013.
|
[21] |
Sutkowy P, Czeleń P. Redox balance in cancer in the context of tumor prevention and treatment[J]. Biomedicines, 2025, 13(5): 1149. DOI: 10.3390/biomedicines13051149.
|
[22] |
Li HL, Zhang CJ, Zhang H, et al. Xanthine oxidoreductase promotes the progression of colitis-associated colorectal cancer by causing DNA damage and mediating macrophage M1 polarization[J]. Eur J Pharmacol, 2021, 906: 174270. DOI: 10.1016/j.ejphar.2021.174270.
|
[23] |
Copur S, Demiray A, Kanbay M. Uric acid in metabolic syndrome: does uric acid have a definitive role?[J]. Eur J Intern Med, 2022, 103: 4-12. DOI: 10.1016/j.ejim.2022.04.022.
|
[24] |
Allegrini S, Garcia-Gil M, Pesi R, et al. The good, the bad and the new about uric acid in cancer[J]. Cancers (Basel), 2022, 14(19): 4959. DOI: 10.3390/cancers14194959.
|
[25] |
Cabǎu G, Crisan TO, Klück V, et al. Urate-induced immune programming: consequences for gouty arthritis and hyperuricemia[J]. Immunol Rev, 2020, 294(1): 92-105. DOI: 10.1111/imr.12833.
|