WANG Yong-bin, CHAI Feng, LI Xiang-wen, YUAN Ju-xiang, WU Jian-hui. Application of ARIMA model and auto-regressive model in prediction on incidence of hand-foot-mouth disease[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2016, 20(3): 303-306. doi: 10.16462/j.cnki.zhjbkz.2016.03.022
Citation:
WANG Yong-bin, CHAI Feng, LI Xiang-wen, YUAN Ju-xiang, WU Jian-hui. Application of ARIMA model and auto-regressive model in prediction on incidence of hand-foot-mouth disease[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2016, 20(3): 303-306. doi: 10.16462/j.cnki.zhjbkz.2016.03.022
WANG Yong-bin, CHAI Feng, LI Xiang-wen, YUAN Ju-xiang, WU Jian-hui. Application of ARIMA model and auto-regressive model in prediction on incidence of hand-foot-mouth disease[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2016, 20(3): 303-306. doi: 10.16462/j.cnki.zhjbkz.2016.03.022
Citation:
WANG Yong-bin, CHAI Feng, LI Xiang-wen, YUAN Ju-xiang, WU Jian-hui. Application of ARIMA model and auto-regressive model in prediction on incidence of hand-foot-mouth disease[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2016, 20(3): 303-306. doi: 10.16462/j.cnki.zhjbkz.2016.03.022
Objective To explore the application of autoregressive integrated moving average(ARIMA) model and auto-regressive model in prediction on incidence of hand,foot and mouth disease in China and compare the predicated effect among them. Methods The data of monthly incidence of hand-foot-mouth disease from January in 2008 to December in 2014 in China was collected, SPSS 13.0 and EViews 8.0 were used to fit ARIMA model and auto-regressive model respectively, at the same time, the monthly data in July to December 2014 was used to evaluate the effect of prediction. Results The average relative error(MRE), mean square predict error(MSE), root mean squared predict error(RMSE) and mean absolute error(MAE) fitted and predicated by ARIMA model were 14.006,4.689,2.165,0.147 and 13.565,4.416,2.101,0.133 respectively. The MRE, MSE, RMSE and MAE fitted and predicated by auto-regressive model were 16.793,7.247,2.692,0.171 and 16.206,6.639,2.577,0.164 respectively. Conclusions According to the model fitness and prediction accuracy, ARIMA model is superior to the auto-regressive model with a good practical value.
Zhang W, Huang B, She C, et al. An epidemic analysis of hand, foot, and mouth disease in Zunyi, China between 2012 and 2014 [J]. Saudi Med J, 2015,36(5): 593-598.
Tarassenko L, Villarroel M, Guazzi A, et al. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models [J]. Physiol Meas, 2014,35(5): 807-831.
Liu L, Luan RS, Yin F, et al. Predicting the incidence of hand, foot and mouth disease in sichuan province, China using the ARIMA model [J]. Epidemiol Infect, 2015,12(3):1-8.
Soni K, Parmar KS, Kapoor S. Time series model prediction and trend variability of aerosol optical depth over coal mines in India [J]. Environ Sci Pollut Res Int, 2015,22(5):3652-3671.