Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 29 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
ZHANG Lele, LI Ke, YUAN Rui, WANG Peng, YANG Xiangdong, YU Binbin, ZHANG Zhijie. Analysis of brucellosis incidence and influencing factors in Yunnan Province based on multi-scale geographically weighted poisson regression model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(8): 889-893. doi: 10.16462/j.cnki.zhjbkz.2025.08.004
Citation: ZHANG Lele, LI Ke, YUAN Rui, WANG Peng, YANG Xiangdong, YU Binbin, ZHANG Zhijie. Analysis of brucellosis incidence and influencing factors in Yunnan Province based on multi-scale geographically weighted poisson regression model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(8): 889-893. doi: 10.16462/j.cnki.zhjbkz.2025.08.004

Analysis of brucellosis incidence and influencing factors in Yunnan Province based on multi-scale geographically weighted poisson regression model

doi: 10.16462/j.cnki.zhjbkz.2025.08.004
ZHANG Lele and LI Ke contribute equally to this article
Funds:

National Natural Science Foundation of China 82473736

Natural Science Foundation of Shanghai 24ZR1414700

More Information
  • Corresponding author: YU Binbin, E-mail: 37593392@qq.com; ZHANG Zhijie, E-mail: epistat@gmail.com
  • Received Date: 2025-03-17
  • Rev Recd Date: 2025-06-09
  • Publish Date: 2025-08-10
  •   Objective  To analyze the influencing factors of brucellosis incidence in various districts of Yunnan Province in 2022, and to reveal the spatial heterogeneity of their effects, so as to provide a reference for formulating scientific prevention and control measures in different regions.  Methods  Data on brucellosis incidence and related influencing factors were collected from 129 districts in Yunnan Province in 2022. The spatial autocorrelation of the brucellosis incidence was analyzed. The goodness of fit of the generalized linear Poisson model (GLM-Poisson), geographically weighted poisson regression (GWPR) model and multi-scale geographically weighted poisson regression (MGWPR) model was compared. Based on the optimal model, influencing factors of brucellosis incidence were analyzed.  Results  In 2022, 1 015 brucellosis cases were reported in Yunnan Province, showing an east-high-west-low spatial distribution pattern with spatial autocorrelation. The MGWPR model had the highest goodness of fit [percent deviance explained (D2)=0.77, Akaike′s information criterion corrected(AICc)=718.27, root mean square error (RMSE)=9.79]. Model results showed that sheep stock (β=0.13-1.49), cattle stock (β=-0.28-0.72), pig stock (β=0.23-0.31), GDP per capita (β=-0.66-1.29), proportion of primary industry GDP (β=-0.83-0.47), grassland area (β=-0.69-1.66), and annual precipitation (β=-1.31-0.40) had significant influences on the incidence of brucellosis at local or global scales. The effects of different factors were heterogeneous across different regions of Yunnan.  Conclusions  The MGWPR model performs better in addressing the spatial heterogeneity of regression relationships and is more suitable for exploring influencing factors of brucellosis in Yunnan. Various factors such as socioeconomic and natural factors significantly influence brucellosis incidence with spatial variations, suggesting that region-specific prevention measures should be formulated.
  • loading
  • [1]
    国家卫生健康委办公厅, 国家中医药局综合司. 布鲁氏菌病诊疗方案(2023年版)[EB/OL]. (2023-12-28)[2024-11-18]. http://www.nhc.gov.cn/ylyjs/pqt/202312/75cfff021a484d0c9c200f85f2bf746b/files/636b3c3d724c41d0876092944162f1ec.pdf.
    [2]
    Wang Y, Wang Y, Zhang LN, et al. An epidemiological study of brucellosis on mainland China during 2004-2018[J]. Transbound Emerg Dis, 2021, 68(4): 2353-2363. DOI: 10.1111/tbed.13896.
    [3]
    杨秋菊, 杨向东, 于彬彬, 等. 2019―2021年云南省人间布鲁氏菌病流行特征分析[J]. 中华地方病学杂志, 2024, 43(2): 118-122. DOI: 10.3760/cma.j.cn231583-20221219-00409.

    Yang QJ, Yang XD, Yu BB, et al. Epidemic characteristics of human brucellosis in Yunnan Province from 2019 to 2021[J]. Chin J Endemiol, 2024, 43(2): 118-122. DOI: 10.3760/cma.j.cn231583-20221219-00409.
    [4]
    Liang DY, Liu D, Yang M, et al. Spatiotemporal distribution of human brucellosis in Inner Mongolia, China, in 2010-2015, and influencing factors[J]. Sci Rep, 2021, 11(1): 24213. DOI: 10.1038/s41598-021-03723-9.
    [5]
    马云龙, 刘英, 李小龙, 等. 中国布鲁菌病的时空分布及影响因素[J]. 中华疾病控制杂志, 2023, 27(11): 1241-1246, 1295. DOI: 10.16462/j.cnki.zhjbkz.2023.11.001.

    Ma YL, Liu Y, Li XL, et al. Spatial-temporal distribution and influencing factors of brucellosis in China[J]. Chin J Dis Control Prev, 2023, 27(11): 1241-1246, 1295. DOI: 10.16462/j.cnki.zhjbkz.2023.11.001.
    [6]
    毕圣贤, 别思羽, 张辉国, 等. 基于时空加权泊松回归模型的全国布鲁氏菌病分布特征与影响因素分析[J]. 中国卫生统计, 2022, 39(3): 405-408, 412. DOI: 10.3969/j.issn.1002-3674.2022.03.018.

    Bi SX, Bie SY, Zhang HG, et al. Distribution characteristics and influencing factors of brucellosis in China based on time-space weighted Poisson regression model[J]. Chinese Journal of Health Statistics, 2022, 39(3): 405-408, 412. DOI: 10.3969/j.issn.1002-3674.2022.03.018.
    [7]
    Zhang M, Chen XR, Bu QQ, et al. Spatiotemporal dynamics and influencing factors of human brucellosis in Mainland China from 2005-2021[J]. BMC Infect Dis, 2024, 24(1): 76. DOI: 10.1186/s12879-023-08858-w.
    [8]
    Sachdeva M, Fotheringham AS, Li ZQ, et al. On the local modeling of count data: multiscale geographically weighted Poisson regression[J]. Int J Geogr Inf Sci, 2023, 37(10): 2238-2261. DOI: 10.1080/13658816.2023.2250838.
    [9]
    Fadmi FR, Otok BW, Kuntoro, et al. Segmentation of stunting, wasting, and underweight in Southeast Sulawesi using geographically weighted multivariate Poisson regression[J]. MethodsX, 2024, 12: 102736. DOI: 10.1016/j.mex.2024.102736.
    [10]
    Wang PZ, Lyu LG, Xu JG. Factors influencing rural households' decision-making behavior on residential relocation: willingness and destination[J]. Land, 2021, 10(12): 1285. DOI: 10.3390/land10121285.
    [11]
    林静静, 张铁威, 李秀央. 疾病时空聚集分析的研究与进展[J]. 中华流行病学杂志, 2020, 41(7): 1165-1170. DOI: 10.3760/cma.j.cn112338-20190806-00582.

    Lin JJ, Zhang TW, Li XY. Research progress on spatiotemporal clustering of disease[J]. Chin J Epidemiol, 2020, 41(7): 1165-1170. DOI: 10.3760/cma.j.cn112338-20190806-00582.
    [12]
    Liu W, Lian QL, Li ZQ, et al. Epidemiological characteristics and spatiotemporal distribution of hepatitis C in southeast coastal areas of China from 2015 to 2022[J]. BMC Infect Dis, 2025, 25(1): 394. DOI: 10.1186/s12879-025-10778-w.
    [13]
    Kira R, Bilung LM, Ngui R, et al. Spatially varying correlation between environmental conditions and human leptospirosis in Sarawak, Malaysia[J]. Trop Biomed, 2021, 38(2): 31-39. DOI: 10.47665/tb.38.2.034.
    [14]
    Huang JW, Kwan MP, Kan ZH, et al. Investigating the relationship between the built environment and relative risk of COVID-19 in Hong Kong[J]. ISPRS Int J Geo Inf, 2020, 9(11): 624. DOI: 10.3390/ijgi9110624.
    [15]
    Samadi A, Amiri M, Hailat N. The reasons behind long-term endemicity of brucellosis in low and middle-income countries: challenges and future perspectives[J]. Curr Microbiol, 2024, 81(3): 82. DOI: 10.1007/s00284-023-03605-5.
    [16]
    云南省农业农村厅. 云南省农业农村厅关于印发云南"十四五"畜牧业高质量发展实施意见的通知[EB/OL]. (2022-03-01)[2024-11-18]. https://nync.yn.gov.cn/html/2022/zuixinwenjian _0301/384310.html.
    [17]
    李剑锋. 非免疫区牛羊布鲁氏菌病诊断与防控措施[J]. 北方牧业, 2024, (8): 33.

    Li JF. Diagnosis and control measures of brucellosis in cattle and sheep in non-immune areas[J]. Northern Animal Husbandry, 2024, (8): 33.
    [18]
    Bence AR, Moran MC, Cacciato CS, et al. Identification of a small-scale pig farm infected with Brucella suis linked to a clinical case of human brucellosis in Buenos Aires Province, Argentina[J]. FAVE Cs Vet, 2020, 20(1): 34-40. DOI: 10.14409/favecv.v20i1.10055.
    [19]
    Baltenweck I, Enahoro D, Frija A, et al. Why is production of animal source foods important for economic development in Africa and Asia?[J]. Anim Front, 2020, 10(4): 22-29. DOI: 10.1093/af/vfaa036.
    [20]
    Shen L, Sun MH, Ma WT, et al. Synergistic driving effects of risk factors on human brucellosis in Datong City, China: a dynamic perspective from spatial heterogeneity[J]. Sci Total Environ, 2023, 894: 164948. DOI: 10.1016/j.scitotenv.2023.164948.
    [21]
    李连欢, 蒋玉娟. 乡村振兴背景下云南特色农业发展现状及扶持政策研究[J]. 中国农业会计, 2023(23): 101-104. DOI: 10.13575/j.cnki.319.2023.23.028.

    Li LH, Jiang YJ. Research on the development status and supporting policies of Yunnan characteristic agriculture under the background of rural revitalization[J]. Chin Agric Account, 2023(23): 101-104. DOI: 10.13575/j.cnki.319.2023.23.028.
    [22]
    赵媛. 宁夏地区人间布鲁氏菌病时空分布特征及其自然环境影响因素研究[D]. 银川: 宁夏医科大学, 2020.

    Zhao Y. Study on the temporal and spatial distribution characteristics of human brucellosis and its natural environmental factors in Ningxia[D]. Yinchuan: Ningxia Medical University, 2020.
    [23]
    Chen H, Lin MX, Wang LP, et al. Driving role of climatic and socioenvironmental factors on human brucellosis in China: machine-learning-based predictive analyses[J]. Infect Dis Poverty, 2023, 12(1): 36. DOI: 10.1186/s40249-023-01087-y.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (14) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return