• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物信息学的hsa-miR-32靶基因预测与功能分析

彭璨璨 马文丽 夏巍 黄正亮 郑文岭

彭璨璨, 马文丽, 夏巍, 黄正亮, 郑文岭. 基于生物信息学的hsa-miR-32靶基因预测与功能分析[J]. 中华疾病控制杂志, 2016, 20(6): 609-613. doi: 10.16462/j.cnki.zhjbkz.2016.06.017
引用本文: 彭璨璨, 马文丽, 夏巍, 黄正亮, 郑文岭. 基于生物信息学的hsa-miR-32靶基因预测与功能分析[J]. 中华疾病控制杂志, 2016, 20(6): 609-613. doi: 10.16462/j.cnki.zhjbkz.2016.06.017
PENG Can-can, MA Wen-li, XIA Wei, HUANG Zheng-liang, ZHENG Wen-ling. Bioinformatics analysis and prediction of hsa-miR-32 target genes[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2016, 20(6): 609-613. doi: 10.16462/j.cnki.zhjbkz.2016.06.017
Citation: PENG Can-can, MA Wen-li, XIA Wei, HUANG Zheng-liang, ZHENG Wen-ling. Bioinformatics analysis and prediction of hsa-miR-32 target genes[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2016, 20(6): 609-613. doi: 10.16462/j.cnki.zhjbkz.2016.06.017

基于生物信息学的hsa-miR-32靶基因预测与功能分析

doi: 10.16462/j.cnki.zhjbkz.2016.06.017
基金项目: 

国家自然科学基金(39880032);广东省领军人才基金(C1030925)

详细信息
    作者简介:

    彭璨璨(1991-),女,广东清远人,在读硕士研究生。主要研究方向:基因芯片与生物信息学。

  • 中图分类号: R349.6;R349.64

Bioinformatics analysis and prediction of hsa-miR-32 target genes

  • 摘要: 目的 利用生物信息学方法,预测hsa-miR-32的靶基因并分析其功能,为深入研究其生物学功能提供指导和思路。方法 利用miRBase数据库获取并分析不同物种的miR-32序列特征;从公共GEO(gene expression omnibus,GEO)数据库中下载不同疾病相关的microRNA表达谱芯片数据,通过miRGator v3.0在线工具和Qlucore Omics Explorer 3.0软件分析hsa-miR-32在不同疾病组织中表达情况;并用PicTar、DIANA-microT-CDS 7.0、PITA及miRanda等方法预测hsa-miR-32靶基因,对获得的靶基因集合分别进行功能富集分析(gene ontology analysis)和生物通路富集分析(pathway enrichment analysis)。结果 miR-32在不同物种间高度保守。与癌旁正常组织相比,hsa-miR-32在子宫癌、结直肠癌、胰腺癌、前列腺癌、乳腺癌等多种癌组织中表达异常(均有P<0.05)。包括已被证实的靶基因,共得到168个候选基因,这些靶基因主要参与调控基因表达、细胞增殖、信号转导、细胞死亡等生物学过程(均有P<0.05),涉及小细胞肺癌、前列腺癌、胶质瘤、黑素瘤等疾病相关通路,以及p53等肿瘤相关信号通路和细胞周期等信号转导通路(均有P<0.05)。结论 hsa-miR-32功能广泛,与癌症的发生、发展密切相关。
  • Ambros V. The functions of animal microRNAs [J]. Nature, 2004,431(7006):350-355.
    Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer [J]. Nat Rev Cancer, 2006,6(4):259-269.
    Ambs S, Prueitt RL, Yi M, et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer [J]. Cancer Res, 2008,68(15):6162-6170.
    Suh SS, Yoo JY, Nuovo GJ, et al. MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme [J]. Proc Natl Acad Sci U S A, 2012,109(14):5316-5321.
    Wu W, Yang J, Feng X, et al. MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells [J]. Molecular Cancer, 2013,12(1):30.
    Xu J, Zhang W, Wan R, et al. MicroRNA-32 inhibits osteosarcoma cell proliferation and invasion by targeting Sox9 [J]. Tumor Biology, 2014,35(10):9847-9853.
    Gocek E, Wang X, Liu X, et al. MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis [J]. Cancer Res, 2011,71(19):6230-6239.
    Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics [J]. Nucleic Acids Res, 2008,36(Database issue):D154-D158.
    Cho S, Jang I, Jun Y, et al. MiRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting [J]. Nucleic Acids Res, 2013,41(Database issue):D252-D257.
    Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets—update [J]. Nucleic Acids Res, 2013,41(Database issue):D991-D995.
    Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions [J]. Nat Genet, 2005,37(5):495-500.
    Vlachos IS, Paraskevopoulou MD, Karagkouni D, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions [J]. Nucleic Acids Res, 2015,43(Database issue):D153-D159.
    Betel D, Wilson M, Gabow A, et al. The microRNA.org resource: targets and expression [J]. Nucleic Acids Res, 2008,36(Database issue):D149-D153.
    Hsu SD, Tseng YT, Shrestha S, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions [J]. Nucleic Acids Res, 2014,42(Database issue):D78-D85.
    Supek F, Bosnjak M, Skunca N, et al. REVIGO summarizes and visualizes long lists of gene ontology terms [J]. PLoS One, 2011,6(7):e21800.
    Lajer CB, Garnaes E, Friis-Hansen L, et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer [J]. Br J Cancer, 2012,106(9):1526-1534.
    Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans [J]. Science, 2001,294(5543):862-864.
    Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs [J]. Genome Res, 2009,19(1):92-105.
    Blondal T, Jensby NS, Baker A, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids [J]. Methods, 2013,59(1):S1-S6.
    Jiang Q, Wang Y, Hao Y, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease [J]. Nucleic Acids Res, 2009,37(Database issue):D98-D104.
    Dacic S, Kelly L, Shuai Y, et al. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status [J]. Mod Pathol, 2010,23(12):1577-1582.
    Petillo D, Kort EJ, Anema J, et al. MicroRNA profiling of human kidney cancer subtypes [J]. Int J Oncol, 2009,35(1):109-114.
    Bandrés E, Cubedo E, Agirre X, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues [J]. Molecular Cancer, 2006,5(1):29.
    Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation [J]. Cell, 2009,139(4):693-706.
    Iliopoulos D, Jaeger SA, Hirsch HA, et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer [J]. Mol Cell, 2010,39(4):493-506.
    Guan K, Wei C, Zheng Z, et al. MAVS Promotes Inflammasome Activation by Targeting ASC for K63-Linked Ubiquitination via the E3 Ligase TRAF3 [J]. J Immunol, 2015,194(10):4880-4890.
    Cooper CS, Nicholson AG, Foster C, et al. Nuclear overexpression of the E2F3 transcription factor in human lung cancer [J]. Lung Cancer, 2006,54(2):155-162.
    Feber A, Clark J, Goodwin G, et al. Amplification and overexpression of E2F3 in human bladder cancer [J]. Oncogene, 2004,23(8):1627-1630.
    Gery S, Tanosaki S, Bose S, et al. Down-regulation and growth inhibitory role of C/EBPalpha in breast cancer [J]. Clin Cancer Res, 2005,11(9):3184-3190.
  • 加载中
计量
  • 文章访问数:  350
  • HTML全文浏览量:  63
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-24
  • 修回日期:  2016-03-27

目录

    /

    返回文章
    返回