Bioinformatics analysis and prediction of hsa-miR-32 target genes
-
摘要: 目的 利用生物信息学方法,预测hsa-miR-32的靶基因并分析其功能,为深入研究其生物学功能提供指导和思路。方法 利用miRBase数据库获取并分析不同物种的miR-32序列特征;从公共GEO(gene expression omnibus,GEO)数据库中下载不同疾病相关的microRNA表达谱芯片数据,通过miRGator v3.0在线工具和Qlucore Omics Explorer 3.0软件分析hsa-miR-32在不同疾病组织中表达情况;并用PicTar、DIANA-microT-CDS 7.0、PITA及miRanda等方法预测hsa-miR-32靶基因,对获得的靶基因集合分别进行功能富集分析(gene ontology analysis)和生物通路富集分析(pathway enrichment analysis)。结果 miR-32在不同物种间高度保守。与癌旁正常组织相比,hsa-miR-32在子宫癌、结直肠癌、胰腺癌、前列腺癌、乳腺癌等多种癌组织中表达异常(均有P<0.05)。包括已被证实的靶基因,共得到168个候选基因,这些靶基因主要参与调控基因表达、细胞增殖、信号转导、细胞死亡等生物学过程(均有P<0.05),涉及小细胞肺癌、前列腺癌、胶质瘤、黑素瘤等疾病相关通路,以及p53等肿瘤相关信号通路和细胞周期等信号转导通路(均有P<0.05)。结论 hsa-miR-32功能广泛,与癌症的发生、发展密切相关。Abstract: Objective Bioinformatics software and database were applied to predict and analyze target genes and functions of hsa-miR-32, in order to provide a basis for the study of the mechanism of hsa-miR-32 and its target genes in cancer. Methods The sequence of miR-32 was got from miRBase database. The microarray data of disease were downloaded from the Gene Expression Omnibus(GEO) and the expression level of hsa-miR-32 in disease was analysed by miRGator and Qlucore Omics Explorer. PicTar, DIANA-microT-CDS, PITA and miRanda algorithm were used to predict target genes of hsa-miR-32. Combined with validated target genes, the gene set was analyzed by gene ontology(GO) and pathway enrichment. Results miR-32 was highly conserved among different species. Different expression levels of hsa-miR-32 were observed in different cancer tissues compared with adjacent normal tissues(all P<0.05). Gene ontology analysis indicated that 168 target genes were mainly enriched in positive regulation of gene expression, negative regulation of cell proliferation, negative regulation of signal transduction, cell death and other biology processes(all P<0.05). KEGG pathway analysis showed that these genes were mostly involved in small cell lung cancer, prostate cancer, glioma, melanoma, pathways in cancer, p53 signaling pathway and cell cycle(all P<0.05). Conclusions The target genes of hsa-miR-32 may have extensive functions and be closely related with cancer.
-
Key words:
- Carcinoma /
- Genes /
- Computational biology /
- Forecasting
-
Ambros V. The functions of animal microRNAs [J]. Nature, 2004,431(7006):350-355. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer [J]. Nat Rev Cancer, 2006,6(4):259-269. Ambs S, Prueitt RL, Yi M, et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer [J]. Cancer Res, 2008,68(15):6162-6170. Suh SS, Yoo JY, Nuovo GJ, et al. MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme [J]. Proc Natl Acad Sci U S A, 2012,109(14):5316-5321. Wu W, Yang J, Feng X, et al. MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells [J]. Molecular Cancer, 2013,12(1):30. Xu J, Zhang W, Wan R, et al. MicroRNA-32 inhibits osteosarcoma cell proliferation and invasion by targeting Sox9 [J]. Tumor Biology, 2014,35(10):9847-9853. Gocek E, Wang X, Liu X, et al. MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis [J]. Cancer Res, 2011,71(19):6230-6239. Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics [J]. Nucleic Acids Res, 2008,36(Database issue):D154-D158. Cho S, Jang I, Jun Y, et al. MiRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting [J]. Nucleic Acids Res, 2013,41(Database issue):D252-D257. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets—update [J]. Nucleic Acids Res, 2013,41(Database issue):D991-D995. Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions [J]. Nat Genet, 2005,37(5):495-500. Vlachos IS, Paraskevopoulou MD, Karagkouni D, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions [J]. Nucleic Acids Res, 2015,43(Database issue):D153-D159. Betel D, Wilson M, Gabow A, et al. The microRNA.org resource: targets and expression [J]. Nucleic Acids Res, 2008,36(Database issue):D149-D153. Hsu SD, Tseng YT, Shrestha S, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions [J]. Nucleic Acids Res, 2014,42(Database issue):D78-D85. Supek F, Bosnjak M, Skunca N, et al. REVIGO summarizes and visualizes long lists of gene ontology terms [J]. PLoS One, 2011,6(7):e21800. Lajer CB, Garnaes E, Friis-Hansen L, et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer [J]. Br J Cancer, 2012,106(9):1526-1534. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans [J]. Science, 2001,294(5543):862-864. Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs [J]. Genome Res, 2009,19(1):92-105. Blondal T, Jensby NS, Baker A, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids [J]. Methods, 2013,59(1):S1-S6. Jiang Q, Wang Y, Hao Y, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease [J]. Nucleic Acids Res, 2009,37(Database issue):D98-D104. Dacic S, Kelly L, Shuai Y, et al. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status [J]. Mod Pathol, 2010,23(12):1577-1582. Petillo D, Kort EJ, Anema J, et al. MicroRNA profiling of human kidney cancer subtypes [J]. Int J Oncol, 2009,35(1):109-114. Bandrés E, Cubedo E, Agirre X, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues [J]. Molecular Cancer, 2006,5(1):29. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation [J]. Cell, 2009,139(4):693-706. Iliopoulos D, Jaeger SA, Hirsch HA, et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer [J]. Mol Cell, 2010,39(4):493-506. Guan K, Wei C, Zheng Z, et al. MAVS Promotes Inflammasome Activation by Targeting ASC for K63-Linked Ubiquitination via the E3 Ligase TRAF3 [J]. J Immunol, 2015,194(10):4880-4890. Cooper CS, Nicholson AG, Foster C, et al. Nuclear overexpression of the E2F3 transcription factor in human lung cancer [J]. Lung Cancer, 2006,54(2):155-162. Feber A, Clark J, Goodwin G, et al. Amplification and overexpression of E2F3 in human bladder cancer [J]. Oncogene, 2004,23(8):1627-1630. Gery S, Tanosaki S, Bose S, et al. Down-regulation and growth inhibitory role of C/EBPalpha in breast cancer [J]. Clin Cancer Res, 2005,11(9):3184-3190.
点击查看大图
计量
- 文章访问数: 350
- HTML全文浏览量: 63
- PDF下载量: 41
- 被引次数: 0