• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天津市大气污染对儿童呼吸系统疾病影响的病例交叉研究

张经纬 冯利红 侯常春 肖福昌 赵岩 于浩 王玉雯 顾清

张经纬, 冯利红, 侯常春, 肖福昌, 赵岩, 于浩, 王玉雯, 顾清. 天津市大气污染对儿童呼吸系统疾病影响的病例交叉研究[J]. 中华疾病控制杂志, 2019, 23(5): 545-549. doi: 10.16462/j.cnki.zhjbkz.2019.05.011
引用本文: 张经纬, 冯利红, 侯常春, 肖福昌, 赵岩, 于浩, 王玉雯, 顾清. 天津市大气污染对儿童呼吸系统疾病影响的病例交叉研究[J]. 中华疾病控制杂志, 2019, 23(5): 545-549. doi: 10.16462/j.cnki.zhjbkz.2019.05.011
ZHANG Jing-wei, FENG Li-hong, HOU Chang-chun, XIAO Fu-chang, ZHAO Yan, YU Hao, WANG Yu-wen, GU Qing. The impact of air pollution on children's respiratory diseases in Tianjin: a case-over study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(5): 545-549. doi: 10.16462/j.cnki.zhjbkz.2019.05.011
Citation: ZHANG Jing-wei, FENG Li-hong, HOU Chang-chun, XIAO Fu-chang, ZHAO Yan, YU Hao, WANG Yu-wen, GU Qing. The impact of air pollution on children's respiratory diseases in Tianjin: a case-over study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(5): 545-549. doi: 10.16462/j.cnki.zhjbkz.2019.05.011

天津市大气污染对儿童呼吸系统疾病影响的病例交叉研究

doi: 10.16462/j.cnki.zhjbkz.2019.05.011
基金项目: 

国家自然科学基金面上项目 81573123

详细信息
    通讯作者:

    顾清, E-mail: guqing315@126.com

  • 中图分类号: R181.23

The impact of air pollution on children's respiratory diseases in Tianjin: a case-over study

Funds: 

National Natural Science Foundation of China 81573123

More Information
  • 摘要:   目的  探求大气污染对天津市儿童呼吸系统疾病的影响,为疾病的预防与控制提供依据。  方法  利用单污染物和多污染物条件Logistic回归模型,来估计空气污染物浓度和儿童呼吸系统疾病发病之间的关系。  结果  单污染物条件Logistic回归模型显示,大气中NO2、PM2.5、PM10、CO的超额危险度(excess risk rate,ER)及其95%CI分别为2.823%(2.581~3.065)、0.476%(0.382~0.569)、0.437%(0.368~0.506)、22.263%(15.449~29.478)。多污染物条件Logistic回归分析显示:在寒冷季节,NO2暴露对儿童呼吸系统疾病的影响效应最大,ER及其95%CI为7.395%(6.595~8.202)。  结论  NO2、PM10、PM2.5、CO日平均浓度的升高可以增高儿童呼吸系统疾病的发生风险。
  • 图  1  SO2、NO2、PM2.5、PM10、CO对儿童呼吸系统疾病日门诊量的单污染物的条件Logistic回归分析

    Figure  1.  Logistic regression analysis of SO2, NO2, PM2.5, PM10 and CO on the daily hospital admissions of children's respiratory diseases in single pollutant model

    表  1  SO2、NO2、PM2.5、PM10、CO对儿童呼吸系统疾病日门诊量的单污染物的条件Logistic回归分析a

    Table  1.   Logistic regression analysis of SO2, NO2, PM2.5, PM10 and CO on the daily hospital admissions of children's respiratory diseases in single pollutant modela

    滞后日 SO2(μg·m-3) NO2(μg·m-3) PM2.5(μg·m-3) PM10(μg·m-3) CO(μg·m-3)
    Lag0 0.16%(-0.02~0.33) 1.09%(0.94~1.23)b 0.17%(0.11~0.22)b 0.15%(0.11~0.20)b 11.60%(7.56~15.80)b
    Lag1 0.13%(-0.05~0.31) 0.97%(0.83~1.11)b 0.14%(0.09~0.20)b 0.19%(0.15~0.23)b 6.24%(2.54~10.08)b
    Lag2 -0.28%(-0.46~-0.10)b 0.98%(0.83~1.12)b 0.13%(0.08~0.19)b 0.16%(0.12~0.20)b 5.66%(2.03~9.42)b
    Lag3 -0.66%(-0.84~-0.48)b 0.77%(0.63~0.91)b 0.08%(0.03~0.13)b 0.09%(0.05~0.13)b 3.37%(-0.19~7.06)
    Lag4 -0.51%(-0.69~-0.33)b 0.92%(0.78~1.06)b 0.19%(0.14~0.24)b 0.11%(0.07~0.15)b 7.52%(3.82~11.36)b
    Lag5 -0.24%(-0.42~-0.06)b 1.12%(0.97~1.26)b 0.26%(0.21~0.31)b 0.15%(0.12~0.19)b 11.72%(7.90~15.68)b
    Lag01 0.25%(0.03~0.46)b 1.41%(1.25~1.58)b 0.21%(0.15~0.28)b 0.24%(0.19~0.29)b 11.99%(7.48~16.70)b
    Lag02 0.12%(-0.14~0.36) 1.80%(1.61~1.98)b 0.27%(0.19~0.34)b 0.31%(0.26~0.37)b 13.86%(8.85~19.10)b
    Lag03 -0.30%(-0.58~-0.02)b 2.08%(1.87~2.29)b 0.29%(0.21~0.37)b 0.34%(0.28~0.40)b 14.55%(9.06~20.31)b
    Lag04 -0.67%(-0.99~-0.36)b 2.41%(2.18~2.63)b 0.36%(0.27~0.44)b 0.37%(0.31~0.43)b 17.24%(11.16~23.65)b
    Lag05 -0.83%(-1.17~-0.49) 2.82%(2.58~3.07)b 0.48%(0.38~0.57)b 0.44%(0.37~0.51)b 22.26%(15.45~29.48)b
    注:a表示表中数值为各污染物的ER值及95% CIb表示差异有统计学意义(P<0.001)。
    下载: 导出CSV

    表  2  SO2、NO2、PM2.5、PM10、CO对儿童呼吸系统疾病日门诊量的多污染物的条件Logistic回归分析a

    Table  2.   Logistic regression analysis of SO2, NO2, PM2.5, PM10 and CO on the daily hospital admissions of children's respiratory diseases in multi-pollutants modela

    全观察期 温暖季节(5月~10月) 寒冷季节(11月~次年4月)
    SO2 -0.78%(-0.97~-0.58)b -0.73%(-0.93~-0.52)b -0.74%(-1.46~-0.01)b
    NO2 5.12%(4.73~5.52)b 5.31%(4.78~5.84)b 7.40%(6.60~8.20)b
    PM10 0.56%(0.42~0.69)b 0.70%(0.53~0.88)b 0.01%(-0.22~0.23)b
    PM2.5 -1.17%(-1.39~-0.96)b -1.59%(-1.85~-1.32)b -0.13%(-0.57~0.31)b
    CO -29.19%(-34.84~-23.04)b -18.61%(-25.53~-11.04)b -86.38%(-89.50~-82.32)b
    注:a表示表中数值为各污染物的ER值及95% CIb表示差异具有统计学意义(P<0.001)。
    下载: 导出CSV
  • [1] Chen R, Yin P, Meng X, et al. Fine particulate air pollution and daily mortality. A Nationwide Analysis in 272 Chinese Cities[J]. Am J Respir Crit Care Med, 2017, 196(1): 73-81. DOI: 10.1164/rccm.201609-1862OC.
    [2] 丁亚萍, 虞明星, 郝海燕, 等. 石家庄市空气PM 2.5浓度与儿童呼吸系统疾病门诊量的关系[J]. 中华疾病控制杂志, 2018(7): 672-676. DOI: 10.16462/j.cnki.zhjbkz.2018.07.005.

    Ding YP, Yu MX, Hao HY, et al. The relationship between fine particulate matter and hospital outpatients with pediatric respiratory[J]. Chin J Dis Contl Prev, 2018(7): 672-676. DOI: 10.16462/j.cnki.zhjbkz.2018.07.005.
    [3] Kurt OK, Zhang J, Pinkerton KE. Pulmonary health effects of air pollution[J]. Curr Opin Pulm Med, 2016, 22(2): 138-143. DOI: 10.1097/MCP.0000000000000248.
    [4] Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events[J]. Am J Epidemiol, 1991, 133(2): 144-153. DOI: 10.1093/oxfordjournals.aje.a115853.
    [5] Schwartz J. Is the association of airborne particles with daily deaths confounded by gaseous air pollutants? An approach to control by matching[J]. Environ Health Perspect, 2004, 112(5): 557-561. DOI: 10.1289/ehp.6431.
    [6] Levy D, Lumley T, Sheppard L, et al. Referent selection in case-crossover analyses of acute health effects of air pollution[J]. Epidemiology, 2001, 12(2): 186-192. DOI: 10.2307/3703621.
    [7] Janes H, Sheppard L, Lumley T. Case-crossover analyses of air pollution exposure data: referent selection strategies and their implications for bias[J]. Epidemiology, 2005, 16(6): 717-726. DOI: 10.1097/01.ede.0000181315.18836.9d.
    [8] Carracedo-Martinez E, Taracido M, Tobias A, et al. Case-crossover analysis of air pollution health effects: a systematic review of methodology and application[J]. Environ Health Perspect, 2010, 118(8): 1173-1182. DOI: 10.1289/ehp.0901485.
    [9] Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter[J]. Environ Int, 2015, 74: 136-143. DOI: 10.1016/j.envint.2014.10.005.
    [10] Amodio M. How a steel plant affects air quality of a nearby urban area: a study on metals and PAH concentrations[M]. 2013. DOI: 10.4209/aaqr.2012.09.0254.
    [11] Shubhankar B, Ambade B. A review on deposition, distribution of polycyclic aromatic hydrocarbons in different environmental matrix and study its toxicity and carcinogenic effect[M]. 2016: 2341-2345. DOI: 10.14233/ajchem.2016.20096.
    [12] Dai Q. Characterization and source identification of heavy metals in ambient PM10 and PM2.5 in an integrated iron and steel industry zone compared with a background site[M]. 2015. DOI: 10.4209/aaqr.2014.09.0226.
    [13] Wiseman C, Zereini F. Airborne particulate matter, platinum group elements and human health[M]. 2010.553-571. DOI: 10.1007/978-3-642-12278-1_28.
    [14] 刘准, 陈丹, 霍细香, 等. 武汉市大气污染物水平与儿童呼吸道疾病门诊量的滞后效应分析[J]. 环境与职业医学, 2018(2): 124-130. DOI: 10.13213/j.cnki.jeom.2018.17650.

    Liu Z, Chen D, Huo XX, et al. Lag effects of air pollutant levels on pediatric respiratory disease outpatient visits in Wuhan[J]. Journal of Environmental and Occupational Medicine, 2018(2): 124-130. DOI: 10.13213/j.cnki.jeom.2018.17650.
    [15] Chen R, Pan G, Zhang Y, et al. Ambient carbon monoxide and daily mortality in three Chinese cities: the China Air Pollution and Health Effects Study (CAPES)[J]. Sci Total Environ, 2011, 409(23): 4923-4928. DOI: 10.1016/j.scitotenv.2011.08.029.
    [16] Kan H, Wong CM, Vichit-Vadakan N, et al. Short-term association between sulfur dioxide and daily mortality: the Public Health and Air Pollution in Asia (PAPA) study[J]. Environ Res, 2010, 110(3): 258-264. DOI: 10.1016/j.envres.2010.01.006.
    [17] Kahnert K, Lucke T, Biertz F, et al. Transfer factor for carbon monoxide in patients with COPD and diabetes: results from the German COSYCONET cohort[J]. Respir Res, 2017, 18(1): 14. DOI: 10.1186/s12931-016-0499-0.
    [18] Carey WA, Weaver AL, Mara KC, et al. Inhaled nitric oxide in extremely premature neonates with respiratory distress syndrome[J]. Pediatrics, 2018, 141(3): e20173108. DOI: 10.1542/peds.2017-3108.
    [19] Zhang J, Zhu T, Kipen H, et al. Cardiorespiratory biomarker responses in healthy young adults to drastic air quality changes surrounding the 2008 Beijing Olympics[J]. Res Rep Health Eff Inst, 2013(174): 5-174.
    [20] Mirowsky JE, Dailey LA, Devlin RB. Differential expression of pro-inflammatory and oxidative stress mediators induced by nitrogen dioxide and ozone in primary human bronchial epithelial cells[J]. Inhal Toxicol, 2016, 28(8): 374-382. DOI: 10.1080/08958378.2016.1185199.
    [21] Chuang KJ, Chan CC, Su TC, et al. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults[J]. Am J Respir Crit Care Med, 2007, 176(4): 370-376. DOI: 10.1164/rccm.200611-1627OC.
    [22] Chen X, Wang X, Huang JJ, et al. Nonmalignant respiratory mortality and long-term exposure to PM10 and SO2: A 12-year cohort study in northern China[J]. Environ Pollut, 2017, 231(Pt 1): 761-767. DOI: 10.1016/j.envpol.2017.08.085.
    [23] Liu Y, Xie S, Yu Q, et al. Short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases in Yichang city, China[J]. Environ Pollut, 2017, 227: 116-124. DOI: 10.1016/j.envpol.2017.04.029.
    [24] Bougas N, Ranciere F, Beydon N, et al. Traffic-related air pollution, lung function, and host vulnerability. New Insights from the PARIS Birth Cohort[J]. Ann Am Thorac Soc, 2018, 15(5): 599-607. DOI: 10.1513/AnnalsATS.201711-900OC.
    [25] Tao M, Chen L, Su L, et al. Satellite observation of regional haze pollution over the North China Plain[J]. Journal of Geophysical Research Atmospheres, 2012, 117(D12). DOI: 10.1029/2012JD017915.
    [26] Tao M, Chen L, Xiong X, et al. Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate[M]. 2014: 417-425. DOI: 10.1016/j.atmosenv.2014.09.026.
    [27] Zhang Z, Zhang X, Gong D, et al. Possible influence of atmospheric circulations on winter hazy pollution in Beijing-Tianjin-Hebei region, northern China[M]. 2015: 22493-22526. DOI: 10.5194/acpd-15-22493-2015.
    [28] Luo M, Hou X, Gu Y, et al. Trans-boundary air pollution in a city under various atmospheric conditions[J]. Sci Total Environ, 2018, 618: 132-141. DOI: 10.1016/j.scitotenv.2017.11.001.
    [29] Ning G, Wang S, Ma M, et al. Characteristics of air pollution in different zones of Sichuan Basin, China[J]. Sci Total Environ, 2018, 612: 975-984. DOI: 10.1016/j.scitotenv.2017.08.205.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  140
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-20
  • 修回日期:  2019-01-02
  • 刊出日期:  2019-05-10

目录

    /

    返回文章
    返回