Analysis of epidemiological characteristics of Japanese encephalitis in Sichuan Province from 2008 to 2018 and application of autoregressive integrated moving average model
-
摘要:
目的 描述四川省2008-2018年流行乙型脑炎(Japanese encephalitis,JE)流行病特征,分析其变化规律,并构建自回归移动平均(autoregressive integrated moving average,ARIMA)模型探讨该模型在预测JE发病趋势中的应用。 方法 采用描述流行病学分析2008-2018年四川省JE流行概况,利用2008年1月-2017年12月四川省JE分月监测资料拟合ARIMA模型,并应用2018年1-12月报告发病数进行模型检验。 结果 四川省2008-2018年JE疫情呈下降趋势,全省疫情主要集中于川东和川南,发病高峰为每年7-9月,儿童为高危人群,但近年来青少年及成人发病有上升趋势。ARIMA(1,0,0)(2,1,0)12能较好拟合JE发病时间序列趋势。 结论 构建ARIMA模型可用于四川省JE疫情报告发病数的短期预测。 Abstract:Objective The aim is to describe the epidemiological characteristics of Japanese encephalitis(JE) in Sichuan Province from 2008 to 2018, to build time series autoregressive integrated moving average(ARIMA) model, and to discuss the model application in the prediction of JE incidence trends. Methods Descriptive epidemiological analysis was used to analyze the epidemic situation of JE in Sichuan Province from 2008 to 2018. Monthly surveillance data of JE in Sichuan Province from January 2008 to December 2017 were used to fit ARIMA model. The number of reported cases from January to December in 2018 was used to test the model. Results The epidemic situation of JE in Sichuan Province from 2008 to 2018 showed a downward trend, and eastern and southern areas were the highly prevalent areas. The incidence peak was from July to September every year. Children were the high-risk group, but the incidence of adolescent and adult was on the rise in recent years. ARIMA(1, 0, 0)(2, 1, 0)12 could appropriately fit the time series. Conclusion ARIMA model can be used for short-term prediction of the reported incidence of JE in Sichuan Province. -
Key words:
- Japanese encephalitis /
- ARIMA model /
- Prediction
-
表 1 2008-2018年四川省JE发病与死亡情况
Table 1. Incidence and mortality rates of JE in Sichuan from 2008 to 2018
年份(年) 人口数(万) 发病数(例) 发病率(/10万) 95% CI值 死亡数(例) 死亡率(/10万) 2008 812.650 7 573 0.705 1 0.649~0.765 24 0.029 5 2009 818.330 6 350 0.427 7 0.384~0.475 15 0.018 3 2010 818.572 2 305 0.372 6 0.332~0.417 5 0.006 1 2011 804.248 9 318 0.395 4 0.353~0.441 13 0.016 2 2012 805.105 5 328 0.407 4 0.364~0.454 12 0.014 9 2013 807.548 8 368 0.455 7 0.410~0.505 14 0.017 3 2014 810.531 8 157 0.193 7 0.165~0.226 5 0.006 2 2015 814.144 7 99 0.121 6 0.098~0.148 2 0.002 5 2016 820.584 1 118 0.143 8 0.119~0.172 3 0.003 7 2017 826.067 0 180 0.217 9 0.187~0.252 4 0.004 8 2018 829.994 3 145 0.174 7 0.147~0.206 3 0.003 6 合计 8 966.463 4 2 941 0.328 0 0.316~0.340 100 0.011 2 表 2 备选ARIMA模型及AIC值
Table 2. Alternative ARIMA model and AIC value
拟建模型 AIC值 ARIMA(2, 0, 2)(1, 1, 1)12 Inf ARIMA(0, 0, 0)(0, 1, 0)12 1 051.36 ARIMA(1, 0, 0)(1, 1, 0)12 1 040.84 ARIMA(0, 0, 1)(0, 1, 1)12 1 046.84 ARIMA(0, 0, 0)(0, 1, 0)12 1 050.78 ARIMA(1, 0, 0)(0, 1, 0)12 1 052.93 ARIMA(1, 0, 0)(2, 1, 0)12 1 035.49 ARIMA(1, 0, 0)(2, 1, 1)12 Inf ARIMA(0, 0, 0)(2, 1, 0)12 1 037.13 ARIMA(2, 0, 0)(2, 1, 0)12 Inf ARIMA(1, 0, 1)(2, 1, 0)12 1 037.73 ARIMA(2, 0, 1)(2, 1, 0)12 1 040.01 ARIMA(1, 0, 0)(2, 1, 0)12 1 034.44 ARIMA(1, 0, 0)(1, 1, 0)12 1 040.90 ARIMA(1, 0, 0)(2, 1, 1)12 Inf ARIMA(0, 0, 0)(2, 1, 0)12 1 036.77 ARIMA(2, 0, 0)(2, 1, 0)12 1 036.59 ARIMA(1, 0, 1)(2, 1, 0)12 1 036.62 ARIMA(2, 0, 1)(2, 1, 0)12 1 038.85 表 3 2018年JE分月报告发病实际值、预测值及95% CI
Table 3. The observed, predicted JE cases and the 95% CI from January 2018 to December 2018
2018年 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 实际值 0.00 0.00 0.00 0.00 1.00 3.00 98.00 35.00 8.00 0.00 0.00 0.00 预测值 0.00 0.00 0.00 0.00 0.38 1.08 79.89 61.31 18.55 4.82 1.40 0.00 95% CI值下限 -54.28 -55.56 -55.62 -55.63 -55.25 -54.55 24.26 5.69 -37.08 -50.81 -54.23 -55.63 95% CI值上限 54.28 55.56 55.62 55.63 56.01 56.71 135.52 116.94 74.17 60.44 57.02 55.63 绝对误差 0.00 0.00 0.00 0.00 0.62 1.92 18.11 26.31 10.55 4.82 1.40 0.00 -
[1] 沈忠周, 马帅, 曲翌敏, 等. ARIMA模型在我国法定传染病报告数中的应用[J]. 中华流行病学杂志, 2017, 38(12): 1708-1712. DOI: 10.3760/cma.j.issn.0254-6450.2017.12.025.Shen ZZ, Ma S, Qu YM, et al. Application of autoregressive integrated moving average model in predicting the reported notifiable communicable diseases in China[J]. Chin J Epidemiol, 2017, 38(12): 1708-1712. DOI: 10.3760/cma.j.issn.0254-6450.2017.12.025. [2] Zhang R, Li F, Liu J, et al. Time series models for short term prediction of the incidence of Japanese encephalitis in Xianyang City, China[J]. Chin Med Sci J, 2017, 32(3): 152. DOI: 10.24920/J1001-9294.2017.036. [3] 吴丹, 宁桂军, 尹遵栋, 等. 中国2011~2013年流行性乙型脑炎流行病学特征分析[J]. 中国疫苗和免疫, 2015, 16(5): 486-490. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJM201505004.htmWu D, Ning GJ, Yin ZD, et al. Epidemiological characteristics of Japanese encephalitis in China from 2011 to 2013[J]. Chinese Journal of Vaccines and Immunization, 2015, 16(5): 486-490. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJM201505004.htm [4] 尹遵栋, 罗会明, 李艺星, 等. 时间序列分析(自回归求和移动平均模型)在流行性乙型脑炎预测中的应用[J]. 中国疫苗和免疫, 2010, 16(5): 457-461. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJM201005022.htmYin ZD, Luo HM, Li YX, et al. The application of autoregressive integrated moving average model on the prediction of Japanese encephalitis cases[J]. Chinese Journal of Vaccines and Immunization, 2010, 16(5): 457-461. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJM201005022.htm [5] 乔治·博克斯. 时间序列分析: 预测与控制[M]. 北京: 人民邮电出版社, 2005.George B. Time series analysis: forecasting and control[M]. Beijing: People's Posts and Telecommunications Press, 2005. [6] Halstead SB, Jacobson J. Japanese Encephalitis[M]. Vaccines, 2018: 312-351. [7] Sarkari NBS, Thacker AK, Barthwal SP, et al. Japanese encephalitis (JE) part Ⅱ: 14 Years' follow-up of survivors[J]. J Neuro, 2012, 259(1): 58-69. DOI: 10.1007/s00415-011-6131-9. [8] Campbell GL, Hills SL, Fischer M, et al. Estimated global incidence of Japanese encephalitis: a systematic review[J]. Bull the World Health Organ, 2015, 89(10): 766-774, 774A-774E. 10.2471/BLT. DOI: 10.2471/BLT.10.085233. [9] 芮莉萍, 张丽, 刘铭, 等. 2011-2015年贵州省流行性乙型脑炎流行特征分析[J]. 现代预防医学, 2017, 44(4): 584-587. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201704003.htmRi LP, Zhang L, Liu M, et al. Epidemiological characteristics analysis on Japanese encephalitis in Guizhou Province from 2011 to 2015[J]. Modern Prevent Med, 2017, 44(4): 584-587. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201704003.htm [10] 蔡亚男, 魏亚梅, 许永刚, 等. 河北省2011-2015年流行性乙型脑炎流行病学特征分析[J]. 实用预防医学, 2018, 25(5): 551-553. DOI: 10.3969/j.issn.1006-3110.2018.05.010.Cai YN, Wei YM, Xu YG, et al. Epidemiological characteristics of Japanese encephalitis in Hebei Province, 2011-2015[J]. Pract Prev Med, 2018, 25(5): 551-553. DOI: 10.3969/j.issn.1006-3110.2018.05.010. [11] 胡雅劼, 余技钢, 钱薇萍, 等. 2014-2016年四川省三带喙库蚊的动态监测[J]. 中华卫生杀虫药械, 2017, 23(6): 552-554. https://www.cnki.com.cn/Article/CJFDTOTAL-WSSC201706017.htmHu YJ, Yu JG, Qian WP, et al. Surveillance of culex tritaeniorhynchus in Sichuan Province from 2014 to 2016[J]. Chin J Hyg Insert & Equip, 2017, 23(6): 552-554. https://www.cnki.com.cn/Article/CJFDTOTAL-WSSC201706017.htm [12] 郭杨, 周兴余. 2011-2014年四川省流行性乙型脑炎流行特征分析[J]. 预防医学情报杂志, 2016, 32(5): 458-461. https://www.cnki.com.cn/Article/CJFDTOTAL-YFYX201605012.htmGuo Y, Zhou XY. Epidemiological characteristics of Japanese encephalitis in Sichuan, 2011-2014[J]. J Prev Med Inf, 2016, 32(5): 458-461. https://www.cnki.com.cn/Article/CJFDTOTAL-YFYX201605012.htm [13] 姜澒月, 李海蓉, 杨林生, 等. 河南省流行性乙型脑炎时空分布特征及影响因素研究[J]. 中国媒介生物学及控制杂志, 2016, 27(2): 128-132. DOI: 10.11853/j.issn.1003.8280.2016.02.009.Jiang HY, Li HR, Yang LS, et al. Analysis on spatiotemporal patterns and driving factors of Japanese encephalitis in Henan Province[J]. Chin J Vector Biol & Control, 2016, 27(2): 128-132. DOI: 10.11853/j.issn.1003.8280.2016.02.009.