• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长链非编码RNA对弥漫大B细胞淋巴瘤患者的预后价值

张慧芳 高倩 王彤

张慧芳, 高倩, 王彤. 长链非编码RNA对弥漫大B细胞淋巴瘤患者的预后价值[J]. 中华疾病控制杂志, 2019, 23(8): 998-1002. doi: 10.16462/j.cnki.zhjbkz.2019.08.022
引用本文: 张慧芳, 高倩, 王彤. 长链非编码RNA对弥漫大B细胞淋巴瘤患者的预后价值[J]. 中华疾病控制杂志, 2019, 23(8): 998-1002. doi: 10.16462/j.cnki.zhjbkz.2019.08.022
ZHANG Hui-fang, GAO Qian, WANG Tong. Prognostic significance of a long non-coding RNA signature in patients with diffuse large B-cell lymphoma[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(8): 998-1002. doi: 10.16462/j.cnki.zhjbkz.2019.08.022
Citation: ZHANG Hui-fang, GAO Qian, WANG Tong. Prognostic significance of a long non-coding RNA signature in patients with diffuse large B-cell lymphoma[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(8): 998-1002. doi: 10.16462/j.cnki.zhjbkz.2019.08.022

长链非编码RNA对弥漫大B细胞淋巴瘤患者的预后价值

doi: 10.16462/j.cnki.zhjbkz.2019.08.022
基金项目: 

国家自然科学基金 81872715

详细信息
    通讯作者:

    王彤. E-mail: tongwang@sxmu.edu.cn

  • 中图分类号: R733.4

Prognostic significance of a long non-coding RNA signature in patients with diffuse large B-cell lymphoma

Funds: 

National Natural Science Foundation of China 81872715

More Information
  • 摘要:   目的  识别与弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者预后相关的长链非编码RNA(long non-coding RNA,lncRNA)并评估其预后价值。  方法  从高通量基因表达数据库(gene expression omnibus,GEO)下载DLBCL患者的基因和临床信息:GSE31312(n=424,训练集)和GSE10846(n=295,验证集)。在训练集中通过套索算法(least absolute shrinkage and selection operator,LASSO)结合平稳选择法以及多因素Cox回归筛选与患者预后相关的lncRNA。根据所筛lncRNA将患者进行危险分层(高危组和低危组)并进行log-rank检验。然后分别建立国际预后指数(international prognostic index,IPI)、lncRNA及IPI+lncRNA的Cox比例风险模型,依据时点/动态受试者工作特征(receiver operating characteristic,ROC)曲线法对各模型的预测准确度进行评价和比较。  结果  共发现8个与DLBCL预后相关的lncRNA。训练和验证集中,两组患者生存曲线的差异均有统计学意义(训练集:χ2=73.1,P < 0.001;验证集:χ2=13.4,P < 0.001),IPI+lncRNA模型的C指数与其他两个模型相比,差异也具有统计学意义(训练集:IPI+lncRNA vs. IPI:Z=76.536,P < 0.001;IPI+lncRNA vs. lncRNA:Z=17.714,P < 0.001;验证集:IPI+lncRNA vs. IPI:Z=42.427,P < 0.001;IPI+lncRNA vs. lncRNA:Z=30.587,P < 0.001)。  结论  本研究发现的8个lncRNA可以作为DLBCL的预后标志物,与IPI结合可提高对DLBCL患者预后判断的准确性。
  • 图  1  训练和验证集中高危组和低危组患者的Kaplan-Meier生存曲线

    Figure  1.  Kaplan-Meier survival curves of patients between high-risk group and low-risk group in the training and validation sets

    图  2  训练集和验证集中IPI、lncRNA和IPI+lncRNA模型的预测准确度

    注:P值是根据Z检验所得,均是和IPI+lncRNA模型进行比较。

    Figure  2.  The predict accuracy for IPI, lncRNA signature and IPI +lncRNA signature model in the training and validation sets

    表  1  训练集和验证集中DLBCL患者的主要临床特征

    Table  1.   Clinical characteristics of DLBCL patients in the training and validation sets

    临床因素 GSE31312(424) GSE10846(295)
    性别
      男 248 158
      女 176 124
      缺失 0 13
    年龄(岁)
      ≤60 177 138
      >60 247 157
    结外病变受侵部位数(个)
      <2 332 272
      ≥2 92 23
    乳酸脱氢酶(LDH)
      正常 141 151
      高于正常 263 144
      缺失 20 0
    行为状态评分(ECOG)(分)
      <2 359 223
      ≥2 65 72
    分期
      Ⅰ或Ⅱ期 - 137
      Ⅲ或Ⅳ期 - 158
    亚型
      GCB 201 128
      ABC 185 122
      未分类 38 45
    生存状态
      存活 269 167
      死亡 155 128
    注:表格中“-”表示缺失。
    下载: 导出CSV

    表  2  与DLBCL患者预后相关的候选lncRNA

    Table  2.   Candidate lncRNA signature associated with prognosis of DLBCL patients

    lncRNA β HR(95% CI)值 P
    RB1-DTa 0.470 1.599 (1.374~1.862) < 0.001
    RPARP-AS1 0.176 1.193 (1.000~1.422) 0.049
    SNHG20a 0.321 1.378 (1.146~1.658) < 0.001
    H19a -0.276 0.758 (0.633~0.909) 0.003
    MIR155HGa -0.182 0.834 (0.707~0.983) 0.031
    PAXIP1-AS1a 0.236 1.266 (1.067~1.503) 0.007
    LINC01857 -0.164 0.849 (0.706~1.021) 0.083
    PRMT5-AS1a 0.305 1.357 (1.176~1.565) < 0.001
    LINC01578 -0.092 0.912 (0.767~1.085) 0.297
    EP300-AS1 -0.162 0.851 (0.706~1.025) 0.089
    PWAR5a -0.289 0.851 (0.622~0.901) 0.002
    ASAP1-IT1a -0.246 0.782 (0.645~0.947) 0.012
    注:表格中所列lncRNA为初筛所得,a:最终筛选结果。
    下载: 导出CSV

    表  3  训练集和验证集中Cox比例风险模型结果

    Table  3.   Results of Cox proportional hazard models in the training and validation sets

    模型 变量 β值 SE Wald HR(95% CI)值 P
    GSE31312
      模型1 IPI 1.099 0.162 46.03 3.002(2.185~4.125) < 0.001
      模型2 lncRNA 0.985 0.087 127.00 2.677(2.255~3.177) < 0.001
      模型3 IPI 0.689 0.168 141.20 1.991(1.432~2.769) < 0.001
    lncRNA 0.890 0.092 2.434(2.034~2.912) < 0.001
    GSE10846
      模型1 IPI 1.088 0.182 35.78 2.969(2.078~4.241) < 0.001
      模型2 lncRNA 0.488 0.097 25.53 1.629(1.348~1.968) < 0.001
      模型3 IPI 1.195 0.183 66.92 3.303(2.305~4.732) < 0.001
    lncRNA 0.538 0.097 1.712(1.416~2.071) < 0.001
    下载: 导出CSV
  • [1] Younes A. Prognostic significance of diffuse large B-cell lymphoma cell of origin: seeing the forest and the trees[J]. J Clin Oncol, 2015, 33(26): 2835-2836. DOI: 10.1200/jco.2015.61.9288.
    [2] 阙喜妹, 郗彦凤, 王彤. Mir-27a高表达对弥漫性大B细胞淋巴瘤患者预后的影响[J]. 中华疾病控制杂志, 2018, 22(10): 1004-1007. DOI: 10.16462/j.cnki.zhjbkz.2018.10.006.

    Que XM, Xi YF, Wang T. Prognostic significance of high expression of mir-27a in patients with diffuse large B cell lymphoma[J]. Chin J Dis Control Prev, 2018, 22(10): 1004-1007. DOI: 10.16462/j.cnki.zhjbkz.2018.10.006.
    [3] Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer[J]. Noncoding RNA Res, 2018, 3(3): 108-117. DOI: 10.1016/j.ncrna.2018.03.001.
    [4] Brazao TF, Johnson JS, Muller J, et al. Long noncoding RNAs in B-cell development and activation[J]. Blood, 2016, 128(7): e10-19. DOI: 10.1182/blood-2015-11-680843.
    [5] Sun J, Cheng L, Shi H, et al. A potential panel of six-long non-coding RNA signature to improve survival prediction of diffuse large-B-cell lymphoma[J]. Sci Rep, 2016, 6: 27842. DOI: 10.1038/srep27842.
    [6] Peng W, Wu J, Feng J. LincRNA-p21 predicts favorable clinical outcome and impairs tumorigenesis in diffuse large B cell lymphoma patients treated with R-CHOP chemotherapy[J]. Clin Exp Med, 2017, 17(1): 1-8. DOI: 10.1007/s10238-015-0396-8.
    [7] Deng L, Jiang L, Tseng KF, et al. Aberrant NEAT1_1 expression may be a predictive marker of poor prognosis in diffuse large B cell lymphoma[J]. Cancer Biomark, 2018, 23(2): 157-164. DOI: 10.3233/cbm-160221.
    [8] Yan Y, Han J, Li Z, et al. Elevated RNA expression of long noncoding HOTAIR promotes cell proliferation and predicts a poor prognosis in patients with diffuse large B cell lymphoma[J]. Mol Med Rep, 2016, 13(6): 5125-5131. DOI: 10.3892/mmr.2016.5190.
    [9] 许树红, 董晓强, 陶然, 等. 基于LASSO的FDR控制方法及其在高维数据生存分析中的应用[J]. 中国卫生统计, 2018, 35(3): 322-3229. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201803001.htm

    Xu SH, Dong XQ, Tao R, et al. LASSO-based methods with the false discovery rate control and the application in survival analysis of high-dimensional data[J]. Chin J Health Statistics, 2018, 35(3): 322-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201803001.htm
    [10] Meinshausen N, Bühlmann P. Stability selection[J]. J R Stat Soc Series B Stat Methodol, 2010, 72(4): 417-473. DOI: 10.1111/j.1467-9868.2010.00740.x.
    [11] Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiplerandom validation strategy[J]. Lancet, 2005, 365(9458): 488-492. DO: 10.1016/s0140-6736(05)17866-0. doi: 10.1016/S0140-6736(05)17866-0
    [12] Zhou M, Guo M, He D, et al. A potential signature of eight long non-coding RNAs predicts survival in patients with non-small cell lung cancer[J]. J Transl Med, 2015, 13: 231. DOI: 10.1186/s12967-015-0556-3.
    [13] 吴丽, 王彤, 吕志杰, 等. 时点/动态ROC曲线法在生存模型预后评价中的应用[J]. 中国卫生统计, 2015, 32(6): 1001-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201506026.htm

    Wu L, Wang T, Lu ZJ, et al. The application of incident/dynamic ROC curves method in prognosis evaluation of survival model[J]. Chin J Health Statistics, 2015, 32(6): 1001-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201506026.htm
    [14] 范磊, 徐卫, 李建勇. 弥漫大B细胞淋巴瘤预后新指标[J]. 中国实用内科杂志, 2015, 35(2): 81-84. DOI: 10.7504/nk2015010101.

    Fan L, Xu W, Li JY. Novel prognostic factors of diffuse large B-cell lymphoma[J]. Chin J Pract Intern Med, 2015, 35(2): 81-84. DOI: 10.7504/nk2015010101.
    [15] Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas[J].J Pathol, 2005, 207(2):243-249. DOI: 10.1002/path.1825.DOI:10.1002/path.1825.
    [16] Chen T, Yang P, He ZY. Long non-coding RNA H19 can predict a poor prognosis and lymph node metastasis: a meta-analysis in human cancer[J]. Minerva Med, 2016, 107(4): 251-258. http://europepmc.org/abstract/MED/27348443
    [17] Wang XP, Shan C, Deng XL, et al. Long non-coding RNA PAR5 inhibits the proliferation and progression of glioma through interaction with EZH2[J]. Oncol Rep, 2017, 38(5): 3177-3186. DOI: 10.3892/or.2017.5986.
    [18] Iuvone PM, Gan J, Alonso-Gómez AL. Strong expression of EZH2 and accumulation of trimethylated H3K27 in diffuse large B-cell lymphoma (DLBCL) independent of cell of origin and EZH2 codon 641 mutation[J]. Leuk Lymphoma, 2015, 56(10): 2895-2901. DOI: 10.3109/10428194.2015.1006220.
    [19] 邓玉洁, 陈刚, 朱伟峰, 等. H3K27me3和EZH2在弥漫大B细胞淋巴瘤疗效预测中的意义[J]. 中国实验血液学杂志, 2018, 26(1): 159-165. DOI: 10.7534/j.issn.1009-2137.2018.01.027.

    Deng YJ, Chen G, Zhu WF, et al. Significance of H3K27me3 and EZH2 in predicting the therapeutic efficacy of diffuse large B-cell lymphoma[J]. J Exp Hematol, 2018, 26(1): 159-165. DOI: 10.7534/j.issn.1009-2137.2018.01.027.
    [20] Tang J, Xie Y, Xu X, et al. Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma[J]. Cell death Dis, 2017, 8(3): e2675. DOI: 10.1038/cddis.2017.81.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  89
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-06-12
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回