• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CNN-LSTM的气象因素与高血压门诊人数关系

张忠林 费珊珊 任晓岚 张静

张忠林, 费珊珊, 任晓岚, 张静. 基于CNN-LSTM的气象因素与高血压门诊人数关系[J]. 中华疾病控制杂志, 2019, 23(9): 1126-1131. doi: 10.16462/j.cnki.zhjbkz.2019.09.021
引用本文: 张忠林, 费珊珊, 任晓岚, 张静. 基于CNN-LSTM的气象因素与高血压门诊人数关系[J]. 中华疾病控制杂志, 2019, 23(9): 1126-1131. doi: 10.16462/j.cnki.zhjbkz.2019.09.021
ZHANG Zhong-lin, FEI Shan-shan, REN Xiao-lan, ZHANG Jing. Study on the relationship between meteorological factors and the number of hypertension outpatients based on CNN-LSTM[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(9): 1126-1131. doi: 10.16462/j.cnki.zhjbkz.2019.09.021
Citation: ZHANG Zhong-lin, FEI Shan-shan, REN Xiao-lan, ZHANG Jing. Study on the relationship between meteorological factors and the number of hypertension outpatients based on CNN-LSTM[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(9): 1126-1131. doi: 10.16462/j.cnki.zhjbkz.2019.09.021

基于CNN-LSTM的气象因素与高血压门诊人数关系

doi: 10.16462/j.cnki.zhjbkz.2019.09.021
基金项目: 

国家自然科学基金 61662043

详细信息
    通讯作者:

    费珊珊, E-mail: 673944904@qq.com

  • 中图分类号: R195;TP183

Study on the relationship between meteorological factors and the number of hypertension outpatients based on CNN-LSTM

Funds: 

National Natural Science Foundation of China 61662043

More Information
  • 摘要:   目的  探讨甘肃省不同地区气象因素对高血压门诊人数的影响,并对高血压门诊人数的变化趋势进行预测分析,从而为高血压疾病的预防和控制提供参考依据。  方法  在控制了高血压门诊相关特征因素的基础上,利用Python编程语言对白银、成县、庆城和凉州四个地区的高血压门诊人数建立卷积神经网络(convolutional neural networks,CNN)和长短期记忆神经网络(long short-term memory,LSTM)混合模型(CNN-LSTM)。  结果  CNN-LSTM模型对甘肃四个地区预测的高血压门诊人数的均方根误差分别为6.330 9、6.814 2、6.393 6和6.867 6,平均绝对百分比误差分别为74.082 2、78.508 2、56.618 3、50.235 4,平均绝对误差分别为4.875 7、5.431 1、4.542 0和6.460 8,结果均优于支持向量机(support vector machine,SVM)、整合移动平均自回归模型(autoregressive integrated moving average model,ARIMA)、随机森林(random forest,RF)、CNN和LSTM。  结论  CNN-LSTM模型可以对甘肃四个地区高血压门诊人数进行较准确的短期预测,医院可以根据不同时间高血压就医需求合理配置医疗资源。
  • 图  1  CNN-LSTM混合模型结构图

    Figure  1.  The diagram of CNN-LSTM hybrid model structure

    图  2  2015-2016年甘肃省四地区气象及污染数据时间分布序列图

    Figure  2.  The time series distribution of meteorological air pollution in the four regions of Gansu Province from 2015 to 2016

    图  3  2016年甘肃省四地区CNN-LSTM高血压门诊量预测图

    Figure  3.  The diagram of CNN-LSTM hypertension outpatient volume forecast in the four regions of Gansu Province in 2016

    表  1  四种模型在甘肃四地区数据集上的预测性能比较

    Table  1.   Comparison of prediction performance of four models on datasets in four regions of Gansu

    地区 模型 RMSE MAPE MAE
    白银 SVM 13.070 4 93.114 9 12.628 9
    ARIMA 8.361 1 90.396 1 5.671 5
    RF 8.095 4 82.423 6 6.042 9
    CNN 7.426 9 77.546 9 5.375 6
    LSTM 6.347 5 74.276 5 5.112 9
    CNN-LSTM 6.330 9 74.082 2 4.875 7
    成县 SVM 16.132 8 95.602 8 14.067 5
    ARIMA 14.342 1 86.769 2 10.883 0
    RF 10.370 4 84.720 1 7.083 3
    CNN 7.932 8 80.806 3 5.988 0
    LSTM 7.834 8 80.266 8 5.695 4
    CNN-LSTM 6.814 2 78.508 2 5.431 1
    庆城 SVM 13.199 9 95.874 5 11.764 5
    ARIMA 8.060 5 82.971 6 6.040 3
    RF 7.497 8 77.840 4 6.065 7
    CNN 7.490 6 76.695 6 5.007 7
    LSTM 6.410 4 65.635 5 4.763 0
    CNN-LSTM 6.393 6 56.618 3 4.542 0
    凉州 SVM 16.242 9 71.635 0 16.734 5
    ARIMA 13.771 0 67.389 3 10.454 4
    RF 8.881 3 63.637 1 6.087 6
    CNN 7.986 9 60.423 5 7.123 2
    LSTM 7.888 3 57.702 3 6.775 1
    CNN-LSTM 6.867 6 50.235 4 6.460 8
    下载: 导出CSV
  • [1] Wright JT, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control[J]. N Engl J Med, 2016, 42(8): e141-e143. DOI: 10.1016/j.semerg.2015.12.009.
    [2] Liu B, Wu J, Zhang J, et al. Characterization and source apportionment of PM 2.5, based on error estimation from EPA PMF 5.0 model at a medium city in China[J]. Environmental Pollution, 2017, 222: 10-22. DOI: 10.1016/j.envpol.2017.01.005.
    [3] 周璐, 仝爽, 张慧, 等. 我国寒地与非寒地地区高血压影响因素的系统综述与Meta分析[J]. 中华疾病控制杂志, 2018, 22(3): 287-292, 297. DOI:10.16462/j.cnki. zhjbkz.2018.03.017.

    Zhou L, Tong S, Zhang H, et al. Factors of hypertension in cold and non-cold area of China: a systematic review and meta-analysis[J]. Chin J Dis Control Prev, 2018, 22(3): 287-292, 297. DOI:10.16462/j.cnki. zhjbkz.2018.03.017.
    [4] 闵晶晶, 丁德平, 李津, 等. 北京急性脑血管疾病与气象要素的关系及预测[J]. 气象, 2014, 40(1): 108-113. DOI: 10.7519/j.issn.1000-0526.2014.01.013.

    Min JJ, Ding DP, Li J, et al. Relationship between acute cerebrovascular disease and meteorological factors in Beijing and its forecast[J]. Meteor Mon, 2014, 40(1): 108-113. DOI: 10.7519/j.issn.1000-0526.2014.01.013.
    [5] 魏俊妮, 薛淑莲, 路殿英, 等. 高血压日入院人数与空气污染物浓度相关性研究[J]. 中国预防医学杂志, 2018, 19(2): 101-105. DOI: 10.16506/j.1009-6639.2018.02.005.

    Wei JN, Xue SL, Lu DY, et al. Association between daily admission of patients with hypertension and air pollutants[J]. Chin Prev Med, 2018, 19(2): 101-105. DOI: 10.16506/j.1009-6639.2018.02.005.
    [6] Blanes-Vidal V, Cantuaria M L, Nadimi E S. A novel approach for exposure assessment in air pollution epidemiological studies using neuro-fuzzy inference systems: Comparison of exposure estimates and exposure-health associations[J]. Environmental Research, 2017, 154: 196-203. DOI: 10.1016/j.envres.2016.12.028.
    [7] 陈杰, 孙耕耘. 慢性阻塞性肺疾病频繁加重的多因素分析[J]. 中华疾病控制杂志, 2019, 23(3): 341-344. DOI: 10.16462/j.cnki.zhjbkz.2019.03.020.

    Chen J, Sun GY. Analysis of the indicators of frequent exacerbation of chronic obstructive pulmonary disease[J]. Chin J Dis Control Prev, 2019, 23(3): 341-344. DOI: 10.16462/j.cnki.zhjbkz.2019.03.020.
    [8] 丁亚萍, 虞明星, 郝海燕, 等. 石家庄市空气PM2.5浓度与儿童呼吸系统疾病门诊量的关系[J]. 中华疾病控制杂志, 2018, 22(7): 672-676. DOI:10.16462/j.cnki.zhjbkz, 2018.07.005.

    Ding YP, Yu MX, Hao HY, et al. The relationship between fine particulate matter and hospital outpatients with pediatric respiratory diseases in Shijiazhuang City[J]. Chin J Dis Control Prev, 2018, 22(7): 672-676. DOI:10.16462/j.cnki.zhjbkz, 2018.07.005.
    [9] Zhai G, Chai G, Zhang H. Study on the medical meteorological forecast of the number of hypertension inpatient based on SVR[J]. IOP Conference Series: Earth and Environmental Science, 2017, 69: 012059. DOI: 10.1088/1755-1315/69/1/012059.
    [10] 任君, 王建华, 王传美, 等. 基于正则化LSTM模型的股票指数预测[J]. 计算机应用与软件, 2018, 35(4), 44-48, 108. DOI: 10.3969/j.issn.1000-386x.2018.04.008.

    Ren J, Wang JH, Wang CM, et al. Stock index forecast based on regularized LSTM model[J]. Computer Applications and Software, 2018, 35(4), 44-48, 108. DOI: 10.3969/j.issn.1000-386x.2018.04.008.
    [11] 宋俊萱. 浅谈白银市生态环境现状与保护对策[J]. 环境研究与监测, 2016, 29(4): 62-65.

    Song JX. The present situation and protection countermeasures of ecological environment in Baiyin[J]. Environ Stud Monitor, 2016, 29(4): 62-65.
    [12] 哈文舸, 台会选. 成县暴雨山洪泥石流灾害的成因分析与对策[J]. 水利规划与设计, 2016(7): 32-34. DOI: 10.3969/j.issn.1672-2469.2016.07.012.

    Ha WG, Tai HX. Analysis of the causes and countermeasures of the storm and flood disasters in Cheng County[J]. Water Resour Plan Dsign, 2016(7): 32-34. DOI: 10.3969/j.issn.1672-2469.2016.07.012.
    [13] 张天锋. 庆阳县经济发展中主要气候要素分析[J]. 甘肃农业, 2002(8): 50-51. DOI: 10.15979/j.cnki.cn62-1104/f.2002.08.026.

    Zhang TF. Analysis of main climate factors in economic development of Qingyang county[J]. Gansu Agr, 2002(8): 50-51. DOI: 10.15979/j.cnki.cn62-1104/f.2002.08.026.
    [14] 袁祥, 张小燕, 郭威, 等. 甘肃省武威市凉州区病媒生物监测分析[J]. 疾病预防控制通报, 2018, 33(2): 15-17. DOI: 10.13215/j.cnki.jbyfkztb.1712011.

    Yuan X, Zhang XY, Guo W, et al. Analysis of vectors surveillance in Liangzhou district, Wuwei city[J]. Endemic Dis Bull, 2018, 33(2): 15-17. DOI: 10.13215/j.cnki.jbyfkztb.1712011.
    [15] 张文增, 甄国新, 陈东妮, 等. 北京市顺义区大气污染物对呼吸系统疾病门诊量的影响[J]. 中国卫生统计, 2017, 34(2): 275-279. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201702026.htm

    Zhang WZ, Zhen GX, Chen DN, et al. Influence of atmospheric pollutants on the outpatient volume of respiratory diseases in Shunyi District, Beijing[J]. Chinese J Health Stats, 2017, 34(2): 275-279. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201702026.htm
    [16] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137. DOI: 10.7500/AEPS20181012004.

    Lu JX, Zhang QP, Yang ZH, et al. Short-term load forecasting method based on hybrid CNN-LSTM neural network model[J]. Automat Electron Power Sys, 2019, 43(8): 131-137. DOI: 10.7500/AEPS20181012004.
    [17] 厍向阳, 王邵鹏. 基于卷积-LSTM网络的广告点击率预测模型研究[J]. 计算机工程与应用, 2019, 55(2): 193-197. DOI: 10.3778/j.issn.1002-8331.1806-0044.

    She XY, Wang SP. Research on advertising click through rate prediction model based on CNN-LSTM network[J]. Comput Eng Appl, 2019, 55(2): 193-197. DOI: 10.3778/j.issn.1002-8331.1806-0044.
    [18] 翁俊, 韦性富, 聂永红, 等. 颗粒物污染对高血压门急诊就诊人数的影响-时间序列研究[J]. 中国环境科学, 2018, 38(7): 2751-2757. DOI: 10.19674/j.cnki.issn1000-6923.2018.0288.

    Weng J, Wei XF, Nie YH, et al. Time series study on the effect of air particulate pollution on emergency admissions for hypertension[J]. China Environ Sci, 2018, 38(7): 2751-2757. DOI: 10.19674/j.cnki.issn1000-6923.2018.0288.
    [19] 吴玉攀, 韦柳意, 王双, 等. 武冈市农村地区心脑血管住院病例的时间序列预测分析[J]. 中华疾病控制杂志, 2019, 23(2): 223-227. DOI: 10.16462/j.cnki.zhjbkz.2019.02.020.

    Wu YF, Wei LY, Wang S, et al. A time-series prediction and analysis on rural inpatient with cardio-cerebrovascular disease in Wugang[J]. Chin J Dis Control Prev, 2019, 23(2): 223-227. DOI: 10.16462/j.cnki.zhjbkz.2019.02.020.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  150
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-22
  • 修回日期:  2019-07-14
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回