• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SARS-CoV-2 Nsp16蛋白分子特征及其对男性生殖功能潜在影响

张凌寒 张婉玉 徐小璐 郭艺红

张凌寒, 张婉玉, 徐小璐, 郭艺红. SARS-CoV-2 Nsp16蛋白分子特征及其对男性生殖功能潜在影响[J]. 中华疾病控制杂志, 2021, 25(4): 439-444. doi: 10.16462/j.cnki.zhjbkz.2021.04.013
引用本文: 张凌寒, 张婉玉, 徐小璐, 郭艺红. SARS-CoV-2 Nsp16蛋白分子特征及其对男性生殖功能潜在影响[J]. 中华疾病控制杂志, 2021, 25(4): 439-444. doi: 10.16462/j.cnki.zhjbkz.2021.04.013
ZHANG Ling-han, ZHANG Wan-yu, XU Xiao-lu, GUO Yi-hong. Molecular characteristics of SARS-CoV-2 Nsp16 protein and analysis of its potential effect on male reproductive function[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(4): 439-444. doi: 10.16462/j.cnki.zhjbkz.2021.04.013
Citation: ZHANG Ling-han, ZHANG Wan-yu, XU Xiao-lu, GUO Yi-hong. Molecular characteristics of SARS-CoV-2 Nsp16 protein and analysis of its potential effect on male reproductive function[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(4): 439-444. doi: 10.16462/j.cnki.zhjbkz.2021.04.013

SARS-CoV-2 Nsp16蛋白分子特征及其对男性生殖功能潜在影响

doi: 10.16462/j.cnki.zhjbkz.2021.04.013
基金项目: 

国家自然科学基金 81571409

河南省高校科技创新团队支持计划 18IRTSTHN030

详细信息
    通讯作者:

    郭艺红,E-mail: 13613863710@163.com

  • 中图分类号: R373

Molecular characteristics of SARS-CoV-2 Nsp16 protein and analysis of its potential effect on male reproductive function

Funds: 

National Natural Science Foundation of China 81571409

Henan Innovation Team Support Program for Colleges and Universities 18IRTSTHN030

More Information
  • 摘要:   目的  COVID-19可能并发生殖功能损伤的问题已引起关注。本研究分析SARS-CoV-2 Nsp16蛋白遗传特征、分子结构与生物功能,探讨病毒侵入睾丸组织后Nsp16对生殖细胞的潜在影响,为该病发病机制和治疗策略研究奠定基础。  方法  应用生物信息技术和国际生物数据库,分析nsp16基因变异性、Nsp16空间结构与功能及对生殖细胞的潜在影响,并利用DrugBank数据库筛选可靶向结合Nsp16的药物。  结果  基于3种30株冠状病毒的nsp16序列构建了进化树;SARS-CoV-2毒株间nsp16基因保守性为99%;Nsp16属于亲水蛋白,在体外细胞的半衰期(half-life)是1.9 h;Nsp16具有甲基转移酶活性,具有调节精子和睾丸间质细胞基因和功能蛋白甲基化潜能;Nsp16具有线性B细胞和CTL细胞抗原表位,可能通过激发免疫反应损伤睾丸组织;从DrugBank数据库筛选出2种可靶向结合Nsp16的抑制性药物。  结论  SARS-CoV-2 Nsp16是基因高度保守的功能蛋白;病毒经血管紧张素转换酶2(angiotensin-converting enzyme 2, ACE2)受体侵入睾丸组织后,Nsp16可能通过促进宿主细胞基因和蛋白甲基化机制,影响生殖细胞生长发育。该研究首次报道靶向结合Nsp16的化疗药物,对COVID-19及相关男性生殖系统疾病的防治研究具有重要参考价值。
  • 图  1  SARS-CoV-2、SARS及MERS病毒株nsp16基因遗传进化树

    Figure  1.  Genetic evolutionary tree of nsp16 genes of SARS-CoV-2, SARS and MERS isolates

    图  2  Nsp16磷酸化位点

    Figure  2.  Nsp16 phosphorylation sites

    图  3  Nsp16空间结构分析

    Figure  3.  Analysis of spatial structure of Nsp16

    表  1  研究应用的生物软件和分析平台

    Table  1.   Biological softwares and analysis platforms applied in this study

    生物软件/在线分析平台 URL 分析
    Omiga 2.0 http://www.oxmol.co.uk/prods/omiga/ nsp16基因序列保守性
    MEGA 5.10 https://www.megasoftware.net/index.php nsp16基因进化树
    Protparam https://web.expasy.org/protparam/ Nsp16分子质量、氨基酸构成、等电点、半衰期、稳定性等理化特性
    Protscale https://web.expasy.org/protscale/ Nsp16亲疏水性
    SignalP 4.0 http://www.cbs.dtu.dk/services/SignalP-4.0/ Nsp16信号肽序列
    TMPRED http://embnet.vitalit.ch/ software/TMPRED/ Nsp16跨膜螺旋
    NetPhos 3.1 http://www.cbs.dtu.dk/services/NetPhos/ Nsp16磷酸化位点
    NetOGlyc 4.0 http://www.cbs.dtu.dk/services/NetOGlyc-4.0/ Nsp16 O-糖基化位点
    SUMOplot http://www.abgent.com/sumoplot Nsp16 SUMO修饰位点
    CDD模块 https://www.ncbi.nlm.nih.gov/cdd/ Nsp16保守功能结构域
    SOPMA https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html Nsp16二级结构
    SWISS-MODEL https://swissmodel.expasy.org/ Nsp16三级结构
    BLEP 2.0 http://tools.immuneepitope.org/bcell/ B细胞相关抗原表位
    SYFPEITHI http://www.syfpeithi.de/bin/mhcserver.dll/epitopeprediction.htm CTL细胞相关抗原表位
    DrugBank http://www.drugbank.ca/ 筛选可与Nsp16靶向结合的潜在药物分子
    下载: 导出CSV
  • [1] Masood N, Malik SS, Raja MN, et al. Unraveling the epidemiology, geographical distribution, and genomic evolution of potentially lethal coronaviruses (SARS, MERS, and SARS-CoV-2)[J]. Front Cell Infect Microbiol, 2020, 10: 499. DOI: 10.3389/fcimb.2020.00499.
    [2] Fu JW, Zhou BX, Zhang LM, et al. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19[J]. Mol Biol Rep, 2020, 47(6): 4383-4392. DOI: 10.1007/s11033-020-05478-4.
    [3] Li MY, Li L, Zhang Y, et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues[J]. Infect Dis Poverty, 2020, 9(1): 45. DOI: 10.1186/s40249-020-00662-x.
    [4] Ahsan W, Javed S, Bratty MA, et al. Treatment of SARS-CoV-2: how far have we reached?[J]. Drug Discov Ther, 2020, 14(2): 67-72. DOI:10.5582/ddt.2020. 03008.
    [5] Idda ML, Soru D, Floris M. Overview of the first 6 months of clinical trials for COVID-19 pharmacotherapy: the most studied drugs[J]. Front Public Heal, 2020, 8: 497. DOI: 10.3389/fpubh.2020.00497.
    [6] Zhu CS, Sun B, Zhang XC, et al. Research progress of genetic structure, pathogenic mechanism, clinical characteristics, and potential treatments of coronavirus disease 2019[J]. Front Pharmacol, 2020, 11: 1327. DOI: 10.3389/fphar.2020.01327.
    [7] Batiha O, Al-Deeb T, Al-Zoubi E, et al. Impact of COVID-19 and other viruses on reproductive health[J]. Andrologia, 2020, 52(9): e13791. DOI: 10.1111/and.13791.
    [8] Garolla A, Pizzol D, Bertoldo A, et al. Sperm viral infection and male infertility: focus on HBV, HCV, HIV, HPV, HSV, HCMV, and AAV[J]. J Reprod Immunol, 2013, 100(1): 20-29. DOI: 10.1016/j.jri.2013.03.004.
    [9] 余克富, 雷莉, 徐蓓, 等. 基于GTEx数据库对COVID-19结合基因ACE2的分析[J]. 中南药学, 2020, 18(9): 1460-1463. DOI: 10.7539/j.issn.1672-2981.2020.09.003.

    Yu KF, Lei L, Xu B, et al. COVID-19 binding gene ACE2 based on GTEx database[J]. Central South Pharm, 2020, 18(9): 1460-1463. DOI: 10.7539/j.issn.1672-2981.2020.09.003.
    [10] Fraietta R, Pasqualotto FF, Roque M, et al. SARS-CoV-2 and male reproductive health[J]. JBRA Assist Reprod, 2020, 24(3): 347-350. DOI: 10.5935/1518-0557.20200047.
    [11] Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells[J]. Cells, 2020, 9(4): 920. DOI: 10.3390/cells9040920.
    [12] Massarotti C, Garolla A, Maccarini E, et al. SARS-CoV-2 in the semen: where does it come from?[J]. Andrology, 2021, 9(1): 39-41. DOI: 10.1111/andr.12839.
    [13] Burlibaȿa L, Ionescu AC, Dragusanu DM. Histone hyperacetylation and DNA methylation interplay during murine spermatogenesis[J]. Zygote, 2019, 27(5): 305-314. DOI: 10.1017/S0967199419000303.
    [14] 刘志朝, 杨佳, 王莉, 等. 精子印记基因甲基化和胎停育关系的病例对照研究[J]. 中国计划生育学杂志, 2019, 27(11): 1434-1437. DOI: 10.3969/j.issn.1004-8189.2019.11.004.

    Liu ZC, Yang J, Wang L, et al. A case-control study of association between methylation of sperm DNA imprinting genes and fetal stop development[J]. Chin J Fam Plan, 2019, 27(11): 1434-1437. DOI: 10.3969/j.issn.1004-8189.2019.11.004.
    [15] Killian JK, Dorssers LC, Trabert B, et al. Imprints and DPPA3 are bypassed during pluripotency-and differentiation-coupled methylation reprogramming in testicular germ cell tumors[J]. Genome Res, 2016, 26(11): 1490-1504. DOI: 10.1101/gr.201293.115.
    [16] Yin WC, Mao CY, Luan XD, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir[J]. Science, 2020, 368(6498): 1499-1504. DOI: 10.1126/science.abc1560.
    [17] Gadadhar S, Alvarez Viar G, Hansen JN, et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility[J]. Science, 2021, 371(6525): eabd4914. DOI: 10.1126/science.abd4914.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  299
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 修回日期:  2021-01-26
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回