• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于uplift模型的2型糖尿病用药处方个性化疗效评价

吴新莹 柳晓涓 潘凤鸣 赵红玉 冯一平 王淑康 季晓康 张振堂 王箐 薛付忠

吴新莹, 柳晓涓, 潘凤鸣, 赵红玉, 冯一平, 王淑康, 季晓康, 张振堂, 王箐, 薛付忠. 基于uplift模型的2型糖尿病用药处方个性化疗效评价[J]. 中华疾病控制杂志, 2021, 25(6): 644-649, 678. doi: 10.16462/j.cnki.zhjbkz.2021.06.005
引用本文: 吴新莹, 柳晓涓, 潘凤鸣, 赵红玉, 冯一平, 王淑康, 季晓康, 张振堂, 王箐, 薛付忠. 基于uplift模型的2型糖尿病用药处方个性化疗效评价[J]. 中华疾病控制杂志, 2021, 25(6): 644-649, 678. doi: 10.16462/j.cnki.zhjbkz.2021.06.005
WU Xin-ying, LIU Xiao-juan, PAN Feng-ming, ZHAO Hong-yu, FENG Yi-ping, WANG Shu-kang, JI Xiao-kang, ZHANG Zhen-tang, WANG Qing, XUE Fu-zhong. Assessment of individualized treatment effect of antidiabetic prescriptions for type 2 diabetes based on uplift model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(6): 644-649, 678. doi: 10.16462/j.cnki.zhjbkz.2021.06.005
Citation: WU Xin-ying, LIU Xiao-juan, PAN Feng-ming, ZHAO Hong-yu, FENG Yi-ping, WANG Shu-kang, JI Xiao-kang, ZHANG Zhen-tang, WANG Qing, XUE Fu-zhong. Assessment of individualized treatment effect of antidiabetic prescriptions for type 2 diabetes based on uplift model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(6): 644-649, 678. doi: 10.16462/j.cnki.zhjbkz.2021.06.005

基于uplift模型的2型糖尿病用药处方个性化疗效评价

doi: 10.16462/j.cnki.zhjbkz.2021.06.005
基金项目: 

国家重点研发计划 2020YFC2003500

国家自然科学基金 81773547

山东省自然科学基金 ZR2019ZD02

详细信息
    通讯作者:

    薛付忠,E-mail: xuefzh@sdu.edu.cn

    王箐,E-mail: wangqing1984@126.com

  • 中图分类号: R181.3

Assessment of individualized treatment effect of antidiabetic prescriptions for type 2 diabetes based on uplift model

Funds: 

National Key Research and Development Program of China 2020YFC2003500

National Natural Science Foundation of China 81773547

Natural Science Foundation of Shandong Province ZR2019ZD02

More Information
  • 摘要:   目的  应用uplift模型评价现实世界2型糖尿病用药处方个性化疗效,识别受益个体特征。  方法  以2012年1月1日至2017年12月31日山东省胶南市“全人群高血压、糖尿病综合防治项目”中的2型糖尿病管理人群为研究对象。干预组三种用药处方包括二甲双胍、格列吡嗪及二甲双胍与格列吡嗪联合用药;对照组为不用药组;结局为观察期内最后一次FPG测量值是否达标。根据倾向得分匹配法,按照1∶1匹配,模拟随机对照试验,用uplift模型评价个性化疗效,并识别受益个体特征。  结果  队列共纳入5 652人,年龄(64.20±11.48)岁;男性2 239名,占比39.61%;二甲双胍、格列吡嗪及联合用药组人数分别为1 707人、321人及535人,不用药组3 089人。3种降糖处方处理组和对照组的倾向性评分在匹配后基本达到平衡,各组血糖控制率与不用药组差异均无统计学意义。但uplift模型个性化疗效评价显示,三种降糖处方分别对组内68.59%、65.73%及51.89%患者有效,净效益增长较随机干预分别提高8.24%、9.60%和10.53%。  结论  uplift模型有助于评价个性化效应,为2型糖尿病个性化用药的受益个体特征识别提供参考。
  • 图  1  二甲双胍、格列吡嗪及联合用药受试对象在处理组和对照组中的血糖控制达标概率分布a

    注:aX轴表示受试者进入对照组血糖控制达标的概率,Y轴表示受试者进入处理组血糖控制达标的概率。

    Figure  1.  The probability distribution of achieving blood glucose control among subjects with metformin, glipizide, or combination in the treatment and control groups a

    图  2  二甲双胍、格列吡嗪及联合用药的uplift随机森林模型Qini曲线

    Figure  2.  Qini curves of the uplift random forest model of metformin, glipizide, and combination

    表  1  三种降糖处方人群基线特征a [n(%)]

    Table  1.   Characteristics of study participants according to 3 hypoglycemic prescriptions at baseline a [n(%)]

    变量 不用药(n=3 089) b 二甲双胍 格列吡嗪 联合用药
    用药(n=1 707) c t/χ2 P 用药(n=321) t/χ2 P 用药(n=535) t/χ2 P
    年龄(x±s, 岁) 64.68±11.74 64.61±11.50 -0.216 0.829 61.88±9.91 -4.721 <0.001 61.58±10.24 -6.328 <0.001
    性别 13.534 <0.001 1.060 0.303 1.958 0.162
      男 1 271(41.1) 608(35.7) 122(38.0) 238(44.5)
      女 1 818(58.9) 1 096(64.3) 199(62.0) 297(55.5)
    BMI(x±s, kg/m2) 25.07±3.36 25.27±3.11 2.141 0.032 24.81±2.88 -1.514 0.131 25.02±2.88 -0.308 0.758
    吸烟 1.285 0.257 0.571 0.450 10.285 0.001
      有 506(16.4) 258(15.1) 47(14.6) 119(22.2)
      无 2 570(83.6) 1 445(84.9) 274(85.4) 416(77.8)
    饮酒 7.863 0.005 7.001 0.008 0.426 0.514
      有 368(12.0) 158(9.3) 22(6.9) 70(13.1)
      无 2 705(88.0) 1 545(90.7) 299(93.1) 465(86.9)
    运动 1.494 0.222 21.187 <0.001 64.684 <0.001
      有 1 762(57.2) 942(55.3) 140(43.6) 205(38.3)
      无 1 319(42.8) 761(44.7) 181(56.4) 330(61.7)
    职业 64.226 <0.001 63.037 <0.001 95.475 <0.001
      农民 1 990(64.5) 1 290(75.7) 278(86.6) 460(86.0)
      非农民 1 097(35.5) 413(24.3) 43(13.4) 75(14.0)
    高血压 7.032 0.008 41.106 <0.001 94.509 <0.001
      有 1 548(50.1) 785(46.1) 100(31.2) 146(27.3)
      无 1 541(49.9) 919(53.9) 221(68.80) 389(72.7)
    基线FPG(x±s, mmol/L) 8.70±2.14 8.90±2.12 3.140 0.002 8.53±2.40 -1.202 0.230 9.28±2.90 4.464 <0.001
    注:a表格统计量为各用药组与不用药组比较所得;b部分个体变量信息缺失,因此相应变量合计不为3 089;c部分个体变量信息缺失,因此相应变量合计不为1 707。
    下载: 导出CSV

    表  2  三种降糖处方倾向得分匹配后的基线特征[n(%)]

    Table  2.   Characteristics of study participants according to 3 antidiabetic prescriptions after PSM at baseline [n(%)]

    变量 二甲双胍 格列吡嗪 联合用药
    不用药(n=1 697) 用药(n=1 697) t/χ2 P 不用药(n=321) 用药(n=321) t/χ2 P 不用药(n=530) 用药(n=530) t/χ2 P
    年龄(x±s, 岁) 64.79±11.96 64.61±11.44 0.431 0.666 61.09±11.98 61.88±9.91 -0.912 0.362 62.08±12.17 61.75±10.10 0.472 0.637
    性别 0.218 0.641 0.107 0.744 3.734 0.053
      男性 593(34.9) 607(35.8) 117(36.4) 122(38.0) 204(38.5) 236(44.5)
      女性 1 104(65.1) 1 090(64.2) 204(63.6) 199(62.0) 326(61.5) 294(55.5)
    BMI(x±s, kg/m2) 25.32±3.44 25.26±3.11 0.544 0.587 25.20±3.50 24.81±2.88 1.548 0.122 25.02±3.34 25.02±2.89 0.034 0.973
    吸烟 <0.001 >0.999 0.868 0.352 0.453 0.501
      有 258(15.2) 257(15.1) 38(11.8) 47(14.6) 109(20.6) 119(22.5)
      无 1 439(84.8) 1 440 (84.9) 283(88.2) 274(85.4) 421(79.4) 411(77.5)
    饮酒 0.089 0.765 0.092 0.762 <0.001 >0.999
      有 151(8.9) 157(9.3) 25(7.8) 22(6.9) 69(13.0) 70(13.2)
      无 1 546(81.1) 1 540(81.7) 296(92.2) 299(93.1) 461(87.0) 460(86.8)
    运动 0.001 0.972 0.923 0.337 0.325 0.568
      有 938(55.3) 940(55.4) 127(39.6) 140(43.6) 195(36.8) 205(38.7)
      无 759(44.7) 757(44.6) 194(60.4) 181(56.4) 335(63.2) 325(61.3)
    职业 52.840 <0.001 44.362 <0.001 55.850 <0.001
      农民 1 091(64.3) 1 286(75.8) 204(63.6) 278(86.6) 350(66.0) 455(85.8)
      非农民 606(35.7) 411(24.2) 117(36.4) 43(13.4) 180(34.0) 75(14.2)
    高血压 0.019 0.891 0.454 0.500 0.117 0.733
      有 787(46.4) 782(46.1) 109(34.0) 100(31.2) 152(28.7) 146(27.5)
      无 910(53.6) 915(53.9) 212(66.0) 221(68.8) 378(71.3) 384(72.5)
    基线FPG(x±s, mmol/L) 8.82±2.20 8.90±2.12 -1.003 0.316 8.49±1.72 8.53±2.40 -0.242 0.809 9.25±2.75 9.19±2.74 0.366 0.715
    下载: 导出CSV

    表  3  二甲双胍、格列吡嗪及联合用药组净效应值排序前10%人群特征[n(%)]

    Table  3.   Characteristics of the top 10% population according to the incremental effect value of metformin, glipizide, and combination [n(%)]

    特征 二甲双胍
    (n=170)
    格列吡嗪
    (n=33)
    联合用药
    (n=53)
    年龄(x±s, 岁) 65.39±12.41 75.06±5.90 59.21±8.98
    性别
      男 68(40.0) 9(27.3) 34(64.2)
      女 102(60.0) 24(72.7) 19(35.8)
    BMI(x±s, kg/m2) 22.15±1.65 24.25±2.92 24.82±3.42
    基线FPG(x±s, mmol/L) 10.67±2.24 7.48±1.62 12.32±3.53
    高血压
      有 77(45.3) 3(9.1) 19(35.8)
      无 93(54.7) 30(90.9) 34(64.2)
    吸烟
      有 30(17.6) 1(3.0) 5(9.4)
      无 140(82.4) 32(97.0) 48(90.6)
    饮酒
      有 17(10.0) 1(3.0) 13(24.5)
      无 153(90.0) 32(97.0) 40(75.5)
    运动
      有 84(49.4) 15(45.5) 11(20.8)
      无 86(50.6) 18(54.5) 42(79.2)
    下载: 导出CSV
  • [1] Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus: present and future perspectives[J]. Nat Rev Endocrinol, 2011, 8(4): 228-236. DOI: 10.1038/nrendo.2011.183.
    [2] NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants[J]. Lancet, 2016, 387(10027): 1513-1530. DOI: 10.1016/S0140-6736(16)00618-8.
    [3] Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030[J]. Diabetes Res Clin Pract, 2010, 87(1): 4-14. DOI: 10.1016/j.diabres.2009.10.007.
    [4] Maffi P, Secchi A. The burden of diabetes: emerging data[J]. Dev Ophthalmol, 2017, 60: 1-5. DOI: 10.1159/000459641.
    [5] Navarro-Pérez J, Orozco-Beltran D, Gil-Guillen V, et al. Mortality and cardiovascular disease burden of uncontrolled diabetes in a registry-based cohort: the ESCARVAL-risk study[J]. BMC Cardiovasc Disord, 2018, 18(1): 180. DOI: 10.1186/s12872-018-0914-1.
    [6] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中华糖尿病杂志, 2018, 10(1): 4-67. DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003.

    Diabetes Society of Chinese Medical Association. Guidelines for the prevention and treatment of type 2 diabetes in China (2017 edition)[J]. Chin J Diabetes Mellitus, 2018, 10(1): 4-67. DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003.
    [7] Ji LN, Lu JM, Guo XH, et al. Glycemic control among patients in China with type 2 diabetes mellitus receiving oral drugs or injectables[J]. BMC Public Health, 2013, 13: 602. DOI: 10.1186/1471-2458-13-602.
    [8] Sherifali D, Nerenberg K, Pullenayegum E, et al. The effect of oral antidiabetic agents on A1C levels: a systematic review and meta-analysis[J]. Diabetes Care, 2010, 33(8): 1859-1864. DOI: 10.2337/dc09-1727.
    [9] American Diabetes Association. Diabetes advocacy: standards of medical care in diabetes-2018[J]. Diabetes Care, 2018, 41(Suppl 1): S152-S153. DOI: 10.2337/dc18-S015.
    [10] Blonde L, Khunti K, Harris SB, et al. Interpretation and impact of real-world clinical data for the practicing clinician[J]. Adv Ther, 2018, 35(11): 1763-1774. DOI: 10.1007/s12325-018-0805-y.
    [11] Barnish MS, Turner S. The value of pragmatic and observational studies in health care and public health[J]. Pragmat Obs Res, 2017, 8: 49-55. DOI: 10.2147/POR.S137701.
    [12] 宋捷, 林海, 金春林, 等. 国内外糖尿病用药结构比较与分析[J]. 中国药业, 2020, 29(22): 7-10. DOI: 10.3969/j.issn.1006-4931.2020.22.002.

    Song J, Lin H, Jin CL, et al. Comparison and analysis of the structure of antidiabetic drugs usage at home and abroad[J]. China Pharm, 2020, 29(22): 7-10. DOI: 10.3969/j.issn.1006-4931.2020.22.002.
    [13] Guelman L, Guillén M, Pérez-Marín AM. Uplift random forests[J]. Cybern Syst, 2015, 46(3-4): 230-248. DOI: 10.1080/01969722.2015.1012892.
    [14] Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies[J]. Multivariate Behav Res, 2011, 46(3): 399-424. DOI: 10.1080/00273171.2011.568786.
    [15] Drake C, Fisher L. Prognostic models and the propensity score[J]. Int J Epidemiol, 1995, 24(1): 183-187. DOI: 10.1093/ije/24.1.183.
    [16] Guelman L, Guillén M, Pérez-Marín AM. Random forests for uplift modeling: an insurance customer retention case[J]. LNBIP, 2012, 115: 123-133. DOI: 10.1007/978-3-642-30433-0_13.
    [17] Rzepakowski P, Jaroszewicz S. Decision trees for uplift modeling with single and multiple treatments[J]. Knowl Inf Syst, 2012, 32(2): 303-327. DOI: 10.1007/s10115-011-0434-0.
    [18] Edwards S. Thomas M. Cover Joy A. Thomas elements of information theory 2nd ed. 2006 John Wiley & Sons, Inc[J]. Inf Process Manag, 2008, 44(1): 400-401. DOI: 10.1016/j.ipm.2007.02.009.
    [19] Rzepakowski P, Jaroszewicz S. Decision trees for uplift modeling with single and multiple treatments[J]. Knowl Inf Syst, 2012, 32(2): 303-327. DOI: 10.1007/s10115-011-0434-0.
    [20] 王国强, 刘云霞. 不同药物联合治疗2型糖尿病的效果对比[J]. 中国卫生标准管理, 2021, 12(4): 107-109. DOI: 10.3969/j.issn.1674-9316.2021.04.040.

    Wang GQ, Liu YX. Comparison of the effect of different drugs in the treatment of type 2 diabetes mellitus[J]. China Heal Stand Manag, 2021, 12(4): 107-109. DOI: 10.3969/j.issn.1674-9316.2021.04.040.
    [21] 高蕾莉, 纪立农, 陆菊明, 等. 2009~2012年我国2型糖尿病患者药物治疗与血糖控制状况调查[J]. 中国糖尿病杂志, 2014, 22(7): 594-598. DOI: 10.3969/j.issn.1006-6187.2014.07.005.

    Gao LL, Ji LN, Lu JM, et al. Current status of blood glucose control and treatment of type 2 diabetes in China 2009-2012[J]. Chin J Diabetes, 2014, 22(7): 594-598. DOI: 10.3969/j.issn.1006-6187.2014.07.005.
    [22] Holland PW, Rubin DB. Causal inference in retrospective studies[J]. ETS Res Rep Ser, 1987(1): 203-231. DOI: 10.1002/j.2330-8516.1987.tb00211.x.
    [23] Anyanwagu U, Mamza J, Gordon J, et al. Premixed vs basal-bolus insulin regimen in type 2 diabetes: comparison of clinical outcomes from randomized controlled trials and real-world data[J]. Diabet Med, 2017, 34(12): 1728-1736. DOI: 10.1111/dme.13518.
    [24] Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983, 70(1): 41-55. DOI: 10.1093/biomet/70.1.41.
    [25] Guelman L, Guillén M, Pérez-Marín AM. A decision support framework to implement optimal personalized marketing interventions[J]. Decis Support Syst, 2015, 72: 24-32. DOI: 10.1016/j.dss.2015.01.010.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  603
  • HTML全文浏览量:  328
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 修回日期:  2021-05-18
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回