• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DNA甲基化介导BMI对胰岛素-妊娠期糖尿病的中介效应

王停停 苏萍 孙晓茹 于媛媛 李洪凯 薛付忠

王停停, 苏萍, 孙晓茹, 于媛媛, 李洪凯, 薛付忠. DNA甲基化介导BMI对胰岛素-妊娠期糖尿病的中介效应[J]. 中华疾病控制杂志, 2021, 25(6): 650-655. doi: 10.16462/j.cnki.zhjbkz.2021.06.006
引用本文: 王停停, 苏萍, 孙晓茹, 于媛媛, 李洪凯, 薛付忠. DNA甲基化介导BMI对胰岛素-妊娠期糖尿病的中介效应[J]. 中华疾病控制杂志, 2021, 25(6): 650-655. doi: 10.16462/j.cnki.zhjbkz.2021.06.006
WANG Ting-ting, SU Ping, SUN Xiao-ru, YU Yuan-yuan, LI Hong-kai, XUE Fu-zhong. DNA methylation mediates the effect of BMI on insulin-treated gestational diabetes mellitus[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(6): 650-655. doi: 10.16462/j.cnki.zhjbkz.2021.06.006
Citation: WANG Ting-ting, SU Ping, SUN Xiao-ru, YU Yuan-yuan, LI Hong-kai, XUE Fu-zhong. DNA methylation mediates the effect of BMI on insulin-treated gestational diabetes mellitus[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(6): 650-655. doi: 10.16462/j.cnki.zhjbkz.2021.06.006

DNA甲基化介导BMI对胰岛素-妊娠期糖尿病的中介效应

doi: 10.16462/j.cnki.zhjbkz.2021.06.006
基金项目: 

国家重点研发计划 2020YFC2003500

国家自然科学基金 81773547

国家自然科学基金 82003557

山东省自然科学基金 ZR2019ZD02

山东省自然科学基金 ZR2019PH041

详细信息
    通讯作者:

    李洪凯,E-mail: lihongkaiyouxiang@163.com

    薛付忠,E-mail: xuefzh@sdu.edu.cn

  • 中图分类号: R71

DNA methylation mediates the effect of BMI on insulin-treated gestational diabetes mellitus

Funds: 

National Key Research and Development Program 2020YFC2003500

National Natural Science Foundation of China 81773547

National Natural Science Foundation of China 82003557

National Natural Science Foundation of Shandong Province ZR2019ZD02

National Natural Science Foundation of Shandong Province ZR2019PH041

More Information
  • 摘要:   目的  探索DNA甲基化是否为BMI和胰岛素-妊娠期糖尿病(insulin-treated gestational diabetes mellitus, I-GDM)之间的中介变量,并估计其中介效应。  方法  研究资料来自基因表达数据库(gene expression omnibus, GEO),检索号为GSE88929,由产科医生收集44例I-GDM病例和64例对照,共纳入212 991个胞嘧啶-磷酸-鸟嘌呤双核苷酸(cytosine-phosphate-guanine pairs of nucleotides, CpG)位点。采用因果推断检验(causal inference test, CIT)筛选出潜在的中介CpG位点。调整孕龄、胎儿性别和胎龄三个混杂因素,进一步通过CpG位点估计BMI对I-GDM的中介效应。  结果  CIT过程第一步结果表明BMI与I-GDM有关联(OR=1.057, 95% CI: 1.014~1.105, P=0.010);第二步调整BMI,采用伪发现率(false discorery rate, FDR)方法进行多重检验校正,共筛选出与I-GDM相关联的6 348个CpG位点纳入下一步分析;第三步调整I-GDM后,确定529个CpG位点分别与BMI有关联;第四步分别调整6个CpG位点后,BMI与I-GDM相互独立。因此,CIT检验出6个CpG位点(cg00542041、cg08589721、cg25775742、cg15819225、cg26824326、cg15110463)作为BMI与I-GDM的中介变量。进一步采用中介分析因果推断模型,证实上述6个CpG存在中介效应。  结论  本研究发现6个DNA甲基化CpG位点在BMI和I-GDM之间发挥了中介作用,均可能作为I-GDM发病机制中新的生物标记物,为研究BMI和I-GDM之间复杂的生物学机制提供了参考依据。
  • 图  1  中介效应模型图

    Figure  1.  Mediation effect model diagram

    表  1  44例I-GDM病例与64例对照的基线特征(x±s)

    Table  1.   Baseline characteristics of 44 I-GDM cases and 64 controls (x±s)

    变量 对照(64例) 病例(44例) t/χ2 P
    孕龄(岁) 30.09±5.09 31.16±4.58 -1.11 0.268
    胎龄(周) 39.41±1.28 38.95±1.43 1.72 0.088
    胎儿出生体重(g) 3 360.94±535.72 3 559.89±500.99 -1.95 0.054
    血液pH值 7.30±0.09 7.27±0.08 2.02 0.046
    BMI(kg/m2) 25.25±5.63 28.23±6.13 -2.60 0.011
    孕妇身高(cm) 165.73±8.74 166.82±6.69 -0.69 0.489
    怀孕前孕妇体重(kg) 71.19±16.15 80.07±17.79 -2.69 0.008
    出生后孕妇体重(kg) 84.90±16.21 93.14±17.92 -2.44 0.016
    出生方式a[n(%)] 0.36 0.547
      剖腹产 15(24.6) 8(19.5)
      顺产 46(71.9) 33(75.0)
    胎儿性别[n(%)] 0.05 0.816
      男 32(50.0) 23(52.3)
      女 32(50.0) 21(47.7)
    孕妇是否吸烟a[n(%)] 0.01 0.941
      是 5(10.9) 5(11.4)
      否 41(64.1) 39(88.6)
    注:a存在数据缺失。
    下载: 导出CSV

    表  2  候选CpG位点信息及CIT分析结果

    Table  2.   Candidate CpG site information and CIT analysis results

    CpG位点 染色体 位置 基因 参考基因区 CIT检验条件的P
    Y~X Y~M|X M~X|Y XY|M
    cg00542041 chr1 1272559 DVL1 Body 0.010 0.024 0.035 0.033
    cg08589721 chr1 1370722 VWA1 TSS200 0.010 0.044 0.002 0.045
    cg25775742 chr1 2337977 PEX10 Body 0.010 0.019 0.034 0.024
    cg15819225 chr1 3583333 TP73 5’UTR 0.010 0.016 0.041 0.041
    cg26824326 chr1 9664366 TMEM201 Body, 3’UTR 0.010 0.048 0.004 0.030
    cg15110463 chr1 27113560 PIGV TSS1500 0.010 0.040 0.026 0.033
    下载: 导出CSV

    表  3  BMI与I-GDM的中介效应分析

    Table  3.   Mediation analysis between BMI and I-GDM

    CpG位点 染色体 位置 基因 CME DE TE 中介比例
    效应值 95% CI P
    cg00542041 chr1 1272559 DVL1 0.001 3 (0.000 0~0.005 2) 0.026 0.004 4 0.005 8 22.3%
    cg08589721 chr1 1370722 VWA1 0.001 5 (0.000 0~0.006 1) 0.043 0.004 1 0.005 6 26.1%
    cg25775742 chr1 2337977 PEX10 0.001 4 (0.000 0~0.005 3) 0.020 0.004 3 0.005 8 24.1%
    cg15819225 chr1 3583333 TP73 0.001 3 (0.000 0~0.005 7) 0.018 0.004 2 0.005 6 23.8%
    cg26824326 chr1 9664366 TMEM201 0.001 4 (0.000 0~0.005 9) 0.048 0.004 0 0.005 4 25.2%
    cg15110463 chr1 27113560 PIGV 0.001 3 (0.000 0~0.005 3) 0.043 0.004 5 0.005 9 21.5%
    下载: 导出CSV
  • [1] Reece EA, Leguizamón G, Wiznitzer A. Gestational diabetes: the need for a common ground[J]. Lancet, 2009, 373(9677): 1789-1797. DOI: 10.1016/S0140-6736(9)60515-8.
    [2] Wang L, Yan B, Shi X, et al. Age at menarche and risk of gestational diabetes mellitus: a population-based study in Xiamen, China[J]. BMC Pregnancy Childbirth, 2019, 19(1): 138. DOI: 10.1186/s12884-019-2287-6.
    [3] Haertle L, El Hajj N, Dittrich M, et al. Epigenetic signatures of gestational diabetes mellitus on cord blood methylation[J]. Clin Epigenetics, 2017, 9: 28. DOI: 10.1186/s13148-017-0329-3.
    [4] Martin KE, Grivell RM, Yelland LN, et al. The influence of maternal BMI and gestational diabetes on pregnancy outcome[J]. Diabetes Res Clin Pract, 2015, 108(3): 508-513. DOI: 10.1016/j.diabres.2014.12.015.
    [5] Yong HY, Mohd Shariff Z, Mohd Yusof BN, et al. Independent and combined effects of age, body mass index and gestational weight gain on the risk of gestational diabetes mellitus[J]. Sci Rep, 2020, 10(1): 8486. DOI: 10.1038/s41598-020-65251-2.
    [6] Najafi F, Hasani J, Izadi N, et al. The effect of prepregnancy body mass index on the risk of gestational diabetes mellitus: a systematic review and dose-response meta-analysis[J]. Obes Rev, 2019, 20(3): 472-486. DOI: 10.1111/obr.12803.
    [7] Reichetzeder C, Dwi Putra SE, Pfab T, et al. Increased global placental DNA methylation levels are associated with gestational diabetes[J]. Clin Epigenetics, 2016, 8: 82. DOI: 10.1186/s13148-016-0247-9.
    [8] Torloni MR, Betrán AP, Horta BL, et al. Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis[J]. Obes Rev, 2009, 10(2): 194-203. DOI: 10.1111/j.1467789X.2008.00541.x.
    [9] International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy[J]. Diabetes Care, 2010, 33(3): 676-682. DOI: 10.2337/dc09-1848.
    [10] Sun D, Zhang T, Su S, et al. Body mass index drives changes in DNA methylation: a longitudinal study[J]. Circ Res, 2019, 125(9): 824-833. DOI: 10.1161/CIRCRESAHA.119.315397.
    [11] Richmond RC, Sharp GC, Ward ME, et al. DNA methylation and BMI: investigating identified methylation sites at HIF3A in a causal framework[J]. Diabetes, 2016, 65(5): 1231-1244. DOI: 10.2337/db15-0996.
    [12] Howe CG, Cox B, Fore R, et al. Maternal gestational diabetes mellitus and newborn DNA methylation: findings from the pregnancy and childhood epigenetics consortium[J]. Diabetes Care, 2020, 43(1): 98-105. DOI: 10.2337/dc19-0524.
    [13] Zhu W, Shen Y, Liu J, et al. Epigenetic alternations of microRNAs and DNA methylation contribute to gestational diabetes mellitus[J]. J Cell Mol Med, 2020, 24(23): 13899-13912. DOI: 10.1111/jcmm.15984.
    [14] Rong C, Cui X, Chen J, et al. DNA methylation profiles in placenta and its association with gestational diabetes mellitus[J]. Exp Clin Endocrinol Diabetes, 2015, 123(5): 282-288. DOI: 10.1055/s-0034-1398666.
    [15] 李嘉佩, 赵维纲, 付勇, 等. MTNR1B基因DNA甲基化与妊娠期糖尿病及妊娠期间糖脂代谢关系的研究[J]. 中华临床营养杂志, 2019, 27(3): 138-143. DOI:10.3760cma.j.issn.1674-635X.2019.03.003.

    Li JP, Zhao WG, Fu Y, et al. The role of MTNR1B gene DNA methylation in gestational diabetes mellitus[J]. Chinese Journal of Clinical Nutrition, 2019, 27(3): 138-143. DOI:10.3760cma.j.issn.1674-635X.2019.03.003.
    [16] Millstein J, Zhang B, Zhu J, et al. Disentangling molecular relationships with a causal inference test[J]. BMC Genet, 2009, 10: 23. DOI: 10.1186/1471-2156-10-23.
    [17] Liu Y, Aryee MJ, Padyukov L, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis[J]. Nat Biotechnol, 2013, 31(2): 142-7. DOI: 10.1038/nbt.2487.
    [18] Kular L, Liu Y, Ruhrmann S, et al. DNA methylation as a mediator of HLA-DRB1a15: 01 and a protective variant in multiple sclerosis[J]. Nat Commun, 2018, 9(1): 2397. DOI: 10.1038/s41467-018-04732-5.
    [19] Dustin T, Teppei Y, Kentaro H, et al. Mediation: R package for causal mediation analysis[J]. Journal of Statistical Software, 2014, 59(5): 17831. DOI: 10.18637/jss.v059.i05.
    [20] Valeri L, Vanderweele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros[J]. Psychol Methods, 2013, 18(2): 137-150. DOI: 10.1037/a0031034.
    [21] Du P, Zhang X, Huang CC, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis[J]. BMC Bioinformatics, 2010, 11: 587. DOI: 10.1186/1471-2105-11-587.
    [22] Vanderweele TJ, Vansteelandt S. Odds ratios for mediation analysis for a dichotomous outcome[J]. Am J Epidemiol, 2010, 172(12): 1339-1348. DOI: 10.1093/aje/kwq332.
    [23] VanderWeele TJ, Vansteelandt S. Mediation analysis with multiple mediators[J]. Epidemiol Methods, 2014, 2(1): 95-115. DOI: 10.1515/em-2012-0010.
    [24] Reichetzeder C, Putra SED, Pfab T, et al. Increased global placental DNA methylation levels are associated with gestational diabetes[J]. BioMed Central, 2016, 8: 82. DOI: 10.1186/s13148-016-0247-9.
    [25] Kafka A, Tomas D, Beroš V, et al. Brain metastases from lung cancer show increased expression of DVL1, DVL3 and beta-catenin and down-regulation of E-cadherin[J]. Int J Mol Sci, 2014, 15(6): 10635-10651. DOI: 10.3390/ijms150610635.
    [26] 辛先祥. 前列腺癌甲基化相关基因生物信息筛选和候选基因VWA1甲基化与前列腺癌关系研究[D]. 广西: 广西医科大学, 2015.

    Xin XX. Bioinformation screening of methylation related genes in prostate cancer and the relationship between VWA1 methylation and prostate cancer[D]. Guangxi: Guangxi Medical University, 2015.
    [27] Hui Y, Xia G. TP73 is a credible biomarker for predicting clinical progression and prognosis in cervical cancer patients[J]. Biosci Rep, 2019, 39(8): BSR20190095. DOI: 10.1042/BSR20190095.
    [28] Feng H, Sui L, Du M, et al. Meta-analysis of TP73 polymorphism and cervical cancer[J]. Genet Mol Res, 2017, 16(1): gmr16016571. DOI: 10.4238/gmr16016571.
    [29] De Fátima Senra CM, Madeiros CCH, de LJL, et al. Putative biomarkers for cervical cancer: SNVs, methylation and expression profiles[J]. Mutat Res, 2017, 773: 161-173. DOI: 10.1016/j.mrrev.2017.06.002.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  351
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-05-18
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回