• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Logistic回归中误调整工具变量对因果效应估计的影响

苏萍 王停停 于媛媛 孙晓茹 李洪凯 薛付忠

苏萍, 王停停, 于媛媛, 孙晓茹, 李洪凯, 薛付忠. Logistic回归中误调整工具变量对因果效应估计的影响[J]. 中华疾病控制杂志, 2021, 25(6): 656-662. doi: 10.16462/j.cnki.zhjbkz.2021.06.007
引用本文: 苏萍, 王停停, 于媛媛, 孙晓茹, 李洪凯, 薛付忠. Logistic回归中误调整工具变量对因果效应估计的影响[J]. 中华疾病控制杂志, 2021, 25(6): 656-662. doi: 10.16462/j.cnki.zhjbkz.2021.06.007
SU Ping, WANG Ting-ting, YU Yuan-yuan, SUN Xiao-ru, LI Hong-kai, XUE Fu-zhong. The effect of mis-adjusting instrumental variables on the estimation of causal effect in Logistic regression analysis model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(6): 656-662. doi: 10.16462/j.cnki.zhjbkz.2021.06.007
Citation: SU Ping, WANG Ting-ting, YU Yuan-yuan, SUN Xiao-ru, LI Hong-kai, XUE Fu-zhong. The effect of mis-adjusting instrumental variables on the estimation of causal effect in Logistic regression analysis model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(6): 656-662. doi: 10.16462/j.cnki.zhjbkz.2021.06.007

Logistic回归中误调整工具变量对因果效应估计的影响

doi: 10.16462/j.cnki.zhjbkz.2021.06.007
基金项目: 

国家重点研发计划 2020YFC2003500

国家自然科学基金 81773547

国家自然科学基金 82003557

山东省自然科学基金 ZR2019ZD02

山东省自然科学基金 ZR2019PH041

详细信息
    通讯作者:

    李洪凯,E-mail:lihongkaiyouxiang@163.com

    薛付忠,E-mail:xuefzh@sdu.edu.cn

  • 中图分类号: R181.2;R195.1

The effect of mis-adjusting instrumental variables on the estimation of causal effect in Logistic regression analysis model

Funds: 

National Key Research and Development Program 2020YFC2003500

National Natural Science Foundation of China 81773547

National Natural Science Foundation of China 82003557

National Natural Science Foundation of Shandong Province ZR2019ZD02

National Natural Science Foundation of Shandong Province ZR2019PH041

More Information
  • 摘要:   目的  通过统计模拟和实例数据分析,探索当存在不可观测的混杂因素时,Logistic回归分析模型中调整工具变量(instrumental variable, Ⅳ)对估计因果效应的影响。  方法  设定变量均服从二项分布,在Logistic回归分析模型中依次使用不同的参数进行统计模拟,以因果效应估计值的偏倚和标准误作为评价指标;实例数据分析是基于山东省多家医院健康体检中心的体检随访数据,以高血压为目标结局,构建纵向观察队列,筛选单核苷酸多态性(single nucleotide polymorphism, SNP)位点rs12149832作为Ⅳ,在Logistic回归分析模型中,采用不同策略(纳入/不纳入rs12149832协变量)来分析BMI与患高血压风险之间的关系。  结果  统计模拟结果显示在以Logistic回归分析模型估计暴露与结局间的效应时,协变量集中纳入Ⅳ会增大效应估计的偏倚和标准误,但增大程度较小;实例分析中,高血压队列共纳入1 240名女性,基线年龄为(37.7±10.5)岁,BMI为(22.1±3.1)kg/m2。纳入Ⅳ的模型所得的效应估计值为0.225(P<0.001),略小于不包含Ⅳ的回归模型所得的效应估计值(0.228, P<0.001),基本验证了关于纳入Ⅳ进行调整的统计模拟结果。  结论  观察性流行病学研究中,Logistic回归分析模型误纳入Ⅳ对效应估计值的偏倚和标准误均有影响。
  • 图  1  Ⅳ假设条件示意图

    Figure  1.  Schematic diagram of Ⅳ assumptions

    图  2  Ⅳ因果图模型

    Figure  2.  Causal diagram of Ⅳ

    图  3  变化变量间OR值、Z生成概率及样本量时估计值的偏倚和标准误

    Figure  3.  Bias and standard error of the estimators with traversing the OR value of parameters, the generation probability of Z and the sample size

    表  1  SNP位点与BMI的关联性

    Table  1.   The association between SNP and BMI

    SNP位点 β sx t P
    rs12149832 0.433 0.196 2.208 0.027
    下载: 导出CSV

    表  2  三种策略下BMI对高血压的效应估计

    Table  2.   Estimation of the effect of BMI on hypertension under three strategies

    模型 方法/自变量 估计值 sx OR(95% CI)值 Z P
    MR TSLS 1.066 0.433 2.904(1.212~6.656) 2.462 0.013
    Logistic模型1 BMI 0.228 0.029 1.256(1.186~1.331) 7.764 <0.001
    Logistic模型2 BMI+rs12149832 0.225 0.029 1.252(1.183~1.327) 7.653 <0.001
    下载: 导出CSV
  • [1] Splawa-Neyman J, Dabrowska DM, Speed TP. On the application of probability theory to agricultural experiments. Essay on principles. Section 9[J]. Statist Sci, 1990, 5(4): 465-472. DOI: 10.1214/ss/1177012031.
    [2] Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies[J]. J Educ Psychol, 1974, 66(5): 688-701. DOI: 10.1307/h0037350.
    [3] Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983, 70(1): 41-55. DOI: 10.1093/biomet/70.1.41.
    [4] 耿直. 观察性研究与混杂因素[J]. 统计与信息论坛, 2004, (5): 13-17. DOI: 10.3969/j.issn.1007-3116.2004.05.003.

    Geng Z. Observational studies and confounding factors[J]. Statistics & Information Forum, 2004, (5): 13-17. DOI: 10.3969/j.issn.1007-3116.2004.05.003.
    [5] D'Agostino RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group[J]. Stat Med, 1998, 17(19): 2265-2281. DOI:10.1002/(sici)1097-0258(19981015)17:19<2265:aid-sim918>3.0.co;2-b.
    [6] VanderWeele TJ, Shpitser I. A new criterion for confounder selection[J]. Biometrics, 2011, 67(4): 1406-1413. DOI: 10.1111/j.1541-0420.2011.01619.x.
    [7] Rubin DB. Should observational studies be designed to allow lack of balance in covariate distributions across treatment groups?[J]. Stat Med, 2010, 28(9): 1420-1423. DOI: 10.1002/sim.3565.
    [8] Hirano K, Imbens GW. Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization[J]. Heal Serv Outcomes Res Methodol, 2001, 2(3-4): 259-278. DOI: 10.1023/a:1020371312283.
    [9] Hitchcock C, Pearl J. Causality: models, reasoning and inference[J]. Philosophical Review, 2001, 110(4): 639. DOI: 10.2307/3182612.
    [10] Weinberg CR. Toward a clearer definition confounding[J]. Am J Epidemiol, 1993, 137(1): 1-8. DOI:1093/oxfordjourala.aje.a116591.
    [11] Bhattacharya J, Vogt WB. Do instrumental variables belong in propensity scores?[J]. Int J Stat Econ, 2012, 9(A12): 107-127. http://www.ams.org/mathscinet-getitem?mr=2967752
    [12] Crown WH. Propensity-score matching in economic analyses: comparison with regression models, instrumental variables, residual inclusion, differences-in-differences, and decomposition methods[J]. Appl Health Econ Health Policy, 2014, 12(1): 7-18. DOI: 10.1007/s40258-013-0075-4.
    [13] James H, Salvador NL, et al. Using matching, instrumental variables, and control functions to estimate economic choice models[J]. Rev Econ Stat, 2004, 86(1): 30-57. DOI: 10.1162/003465304323023660.
    [14] Patrick AR, Schneeweiss S, Brookhart MA, et al. The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration[J]. Pharmacoepidemiol Drug Saf, 2011, 20(6): 551-559. DOI: 10.1002/pds.2098.
    [15] Myers JA, Rassen JA, Gagne JJ, et al. Effects of adjusting for instrumental variables on bias and precision of effect estimates[J]. Am J Epidemiol, 2011, 174(11): 1213-1222. DOI: 10.1093/aje/kwr364.
    [16] Walker AM. Matching on provider is risky[J]. J Clin Epidemiol, 2013, 66(8): S65-S68. DOI: 10.1016/j.jclinepi.2013.02.012.
    [17] Brooks JM, Ohsfeldt RL. Squeezing the balloon: propensity scores and unmeasured covariate balance[J]. Health Serv Res, 2013, 48(4): 1487-1507. DOI: 10.1111/1475-6773.12020.
    [18] Ali MS, Groenwold RH, Klungel OH. Propensity score methods and unobserved covariate imbalance: comments on "squeezing the balloon"[J]. Health Serv Res, 2014, 49(3): 1074-1082. DOI: 10.1111/1475-6773.12152.
    [19] Pearl J. On a class of bias-amplifying variables that endanger effect estimates[J]. Computer ence, 2012: 417-424 http://www.oalib.com/paper/4031166
    [20] 冯国双, 陈景武, 周春莲. Logistic回归应用中容易忽视的几个问题[J]. 中华流行病学杂志, 2004, 25(6): 544-545. DOI: 10.3760/j.issn:0254-6450.2004.06.022.

    Feng GS, Chen JW, Zhou CL. Several problems easy to be ignored in the application of logistic regression[J]. Chin J Epidemiol, 2004, 25(6): 544-545. DOI: 10.3760/j.issn:0254-6450.2004.06.022.
    [21] 刘启军, 曾庆, 周燕荣. 精确Logistic回归及其SAS应用程序[J]. 中华流行病学杂志, 2003, 24(8): 725-728. DOI: 10.3760/j.issn:0254-6450.2003.08.022.

    Liu QJ, Zeng Q, Zhou YR. Accurate logistic regression and its SAS application[J]. Chin J Epidemiol, 2003, 24(8): 725-728. DOI: 10.3760/j.issn:0254-6450.2003.08.022.
    [22] 刘娅飞, 邢娉, 徐秀琴, 等. 山东多中心健康管理纵向观察队列[J]. 山东大学学报(医学版), 2017(6): 30-36. DOI: 10.6040/j.issn.1671-7554.0.2017.376.

    Liu YF, Xing P, Xu XQ, et al. Multi-center health management cohort of Shandong Province[J]. Journal of Shandong University (Medical Sciences), 2017(6): 30-36. DOI: 10.6040/j.issn.1671-7554.0.2017.376.
    [23] 中国高血压防治指南修订委员会. 中国高血压防治指南2010[J]. 中华心血管病杂志, 2011, 39(7): 579-616. doi: 10.3760/cma.j.issn.0253-3758.2011.07.002

    Chinese Committee for the Revision of Hypertension Guidelines. 2010 Chinese guidelines for the management of hypertension[J]. Chin J Cardiol, 2011, 39(7): 579-616. doi: 10.3760/cma.j.issn.0253-3758.2011.07.002
    [24] Loos R, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity[J]. Nat Genet, 2008, 40(6): 768. DOI: 10.1038/ng.140.
    [25] Chen B, Li Z, Chen J, et al. Association of fat mass and obesity-associated and retinitis pigmentosa guanosine triphosphatase (GTPase) regulator-interacting protein-1 like polymorphisms with body mass index in Chinese women[J]. Endocr J, 2018, 65(7). DOI: 10.1507/endocrj.ej17-0554.
    [26] Palmer TM, Lawlor DA, Harbord RM, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors[J]. Stat Methods Med Res, 2012, 21(3): 223-242. DOI: 10.1177/0962280210394459.
    [27] Palmer TM, Nordestgaard BG, Benn M, et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: Mendelian randomisation analysis of two large cohorts[J]. BMJ, 2013, 347: f4262. DOI: 10.1136/bmj.f4262.
    [28] Timpson NJ, Harbord R, Davey Smith G, et al. Does greater adiposity increase blood pressure and hypertension risk?: Mendelian randomization using the FTO/MC4R genotype[J]. Hypertension, 2009, 54(1): 84-90. DOI: 10.1161/hypertensionaha.109.130005.
    [29] Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference[J]. Stat Methods Med Res, 2007, 16(4): 309-330. DOI: 10.1177/0962280206077743.
    [30] Ding P, Vanderweele TJ, Robins JM. Instrumental variables as bias amplifiers with general outcome and confounding[J]. Biometrika, 2017, 104(2): 291-302. DOI: 10.1093/biomet/asx009.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  790
  • HTML全文浏览量:  534
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 修回日期:  2021-05-18
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回