• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不同对照抽样方法下的全球高致病性禽流感H5N1空间风险分析

肖霜 张俊 胡健 黄家祺 熊成龙 张志杰

肖霜, 张俊, 胡健, 黄家祺, 熊成龙, 张志杰. 基于不同对照抽样方法下的全球高致病性禽流感H5N1空间风险分析[J]. 中华疾病控制杂志, 2021, 25(7): 779-784. doi: 10.16462/j.cnki.zhjbkz.2021.07.008
引用本文: 肖霜, 张俊, 胡健, 黄家祺, 熊成龙, 张志杰. 基于不同对照抽样方法下的全球高致病性禽流感H5N1空间风险分析[J]. 中华疾病控制杂志, 2021, 25(7): 779-784. doi: 10.16462/j.cnki.zhjbkz.2021.07.008
XIAO Shuang, ZHANG Jun, HU Jian, HUANG Jia-qi, XIONG Cheng-long, ZHANG Zhi-jie. Spatial risk analysis of global highly pathogenic avian influenza H5N1 virus based on different methods of choosing controls[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(7): 779-784. doi: 10.16462/j.cnki.zhjbkz.2021.07.008
Citation: XIAO Shuang, ZHANG Jun, HU Jian, HUANG Jia-qi, XIONG Cheng-long, ZHANG Zhi-jie. Spatial risk analysis of global highly pathogenic avian influenza H5N1 virus based on different methods of choosing controls[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(7): 779-784. doi: 10.16462/j.cnki.zhjbkz.2021.07.008

基于不同对照抽样方法下的全球高致病性禽流感H5N1空间风险分析

doi: 10.16462/j.cnki.zhjbkz.2021.07.008
基金项目: 

国家自然科学基金 81973102

国家自然科学基金 81872673

上海市公共卫生优秀学科带头人培养计划 GWV-10.2-XD21

详细信息
    通讯作者:

    熊成龙, E-mail: xiongchenglong@fudan.edu.cn

    张志杰, E-mail: epistat@gmail.com

  • 中图分类号: R183;R188

Spatial risk analysis of global highly pathogenic avian influenza H5N1 virus based on different methods of choosing controls

Funds: 

National Natural Science Foundation of China 81973102

National Natural Science Foundation of China 81872673

Shanghai Municipal Public Health Excellent Discipline Leader Training Program GWV-10.2-XD21

More Information
  • 摘要:   目的  基于全球高致病性禽流感H5N1(highly pathogenic avian influenza virus H5N1, HPAIV H5N1)疫情数据,探讨比较四种对照抽样对全球HPAIV H5N1空间风险分析的影响。  方法  疫情数据来源于官方疫情监测报告。构建以国家为单位的完全随机抽样、缓冲区抽样、基于人口密度的概率抽样和最大熵(MaxEnt)抽样四种抽样,按1∶4比例抽样作为对照数据。收集整理距铁路、公路和候鸟迁徙路径的最短距离、土地类型、全球数字高程模型、婴儿死亡率6个因素,采用Logistic空间自回归模型进行建模,基于受试者工作特征曲线下面积(the area under the curve, AUC)、灵敏度、特异度等评价指标,比较不同抽样的影响并预测风险。  结果  四种抽样所得的AUC值在0.896~0.971间,预测能力均好,而MaxEnt抽样预测能力最优。从预测风险来看,随机抽样和缓冲区抽样预测结果存在偏差,概率抽样的预测结果存在低估,MaxEnt抽样空间风险预测结果最优。  结论  随机抽样下的全球HPAIV H5N1疫情空间风险建模结果最差,MaxEnt抽样的建模结果最好,空间风险预测地区更为准确,可作为全球禽流感空间流行病学研究中合理对照选择的参考,同时建议在今后类似的研究中,须重视对照抽样方法的选择。
  • 图  1  HPAIV H5N1禽流感疫情及四种对照抽样点的全球分布情况图

    Figure  1.  Global distribution of HPAIV H5N1 and four types of controls

    图  2  四种对照抽样的空间风险因素建模的预测风险图

    Figure  2.  Predicted high-risk areas of global HPAIV H5N1 for four sampling methods

    表  1  基于四种抽样的风险因素模型结果

    Table  1.   Results of risk modelling based on four sampling methods

    系数 OR (95% CI)值
    随机抽样 缓冲区抽样 概率抽样 MaxEnt抽样
    距候鸟迁徙路线最短距离 3.87(3.34~4.39) a 0.39(0.19~0.59) a 0.08(0.03~0.12) a 0.04(-0.001~0.08)
    距公路最短距离 -1.08(-1.83~-0.34) a -3.34(-5.69~-0.98) a -0.04(-0.40~0.31) -1.00(-1.39~-0.60) a
    距铁路最短距离 -3.79(-4.79~-2.79) a -0.60(-1.04~-0.15) a -0.29(-0.49~-0.09) a -0.63(-0.87~-0.39) a
    全球数字高程模型 -1.38(-1.94~-0.82) a -1.58(-4.50~1.34) 0.01(-0.23~0.25) 0.07(-0.11~0.24)
    婴儿死亡率 9.41(-0.51~19.32) -0.98(-1.40~-0.56) a -26.51(-33.99~-19.03) a -15.92(-22.01~-9.83) a
    土地类型-森林灌木 0.44(-0.22~1.10) -1.34(-2.39~-0.28) a 0.28(-0.52~1.07) -0.69(-1.34~-0.04)a
    土地类型-湿地植被 0.09(-0.52~0.70) -0.14(-0.71~0.44) 0.95(0.46~1.44) a 0.09(-0.32~0.50)
    土地类型-城镇空地 1.25(0.61~1.88) a -0.97(-1.73~-0.22) a 0.65(0.09~1.22) a 0.54(0.12~0.97) a
    土地类型-水体 1.55(0.42~2.67) a 0.64(-0.64~1.91) 1.14(0.10~2.19) a 1.08(0.23~1.94) a
      注:aP<0.05。
    下载: 导出CSV

    表  2  基于四种抽样的风险因素模型评估及AUC值两两比较结果

    Table  2.   Evaluations of risk modelling based on four sampling methods and the results of pairwise comparison among AUC values

    抽样方法 灵敏度 特异度 AUC值 Z
    随机抽样 缓冲区抽样 概率抽样
    随机抽样 0.844 0.563 0.895
    缓冲区抽样 0.946 0.547 0.969 -4.737 a
    概率抽样 0.955 0.505 0.953 -5.357 a -0.853
    MaxEnt抽样 0.916 0.575 0.971 -5.862 a -0.639 -0.127
      注:aP < 0.001。
    下载: 导出CSV
  • [1] Chang SC, Cheng YY, Shih SR. Avian influenza virus: the threat of a pandemic[J]. Biomed J, 2006, 29(2): 130.
    [2] Gilbert M, Pfeiffer DU. Risk factor modelling of the spatio-temporal patterns of highly pathogenic avian influenza (HPAIV) H5N1: a review[J]. Spat Spatiotemporal Epidemiol, 2012, 3(3): 173-183. DOI: 10.1016/j.sste.2012.01.002.
    [3] Claes F, Kuznetsov D, Liechti R, et al. The EMPRES-i genetic module: a novel tool linking epidemiological outbreak information and genetic characteristics of influenza viruses[J]. Database(Oxford), 2014, 2014: bau008. DOI: 10.1093/database/bau008.
    [4] Xu M, Cao CX, Li Q, et al. Ecological niche modeling of risk factors for H7N9 human infection in China[J]. Int J of Environ Res Public Health, 2016, 13(6): 600. DOI: 10.3390/ijerph13060600.
    [5] Dai S, Feng DL, Xu B. Monitoring potential geographical distribution of four wild bird species in China[J]. Environ Earth Sci, 2016, 75(9): 1-10. DOI: 10.1007/s12665-016-5289-y.
    [6] Moriguchi S, Onuma M, Goka K. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan[J]. J Vet Med Sci, 2016, 78(7): 1107-1115. DOI: 10.1292/jvms.15-0551.
    [7] Senay SD, Worner SP, Ikeda T. Novel three-step pseudo-absence selection technique for improved species distribution modelling[J]. PLoS One, 2013, 8(8): e71218. DOI: 10.1371/journal.pone.0071218.
    [8] 孙利谦, 夏聪聪, 李锐, 等. 基于空间点模式分析全球高致病性禽流感H5N1的空间分布特征[J]. 中华疾病控制杂志, 2016, 20(6): 555-558. DOI: 10.16462/j.cnki.zhjbkz.2016.06.005.

    Sun LQ, Xia CC, Li R, et al. Spatial distribution characteristics of global highly pathogenic avian influenza H5N1 based on the spatial point pattern analysis[J]. Chin J Dis Control Prev, 2016, 20(6): 555-558. DOI: 10.16462/j.cnki.zhjbkz.2016.06.005.
    [9] Sun L, Ward MP, Li R, et al. Global spatial risk pattern of highly pathogenic avian influenza H5N1 virus in wild birds : a knowledge-fusion based approach[J]. Prev Vet Med, 2018, 152: 32-39. DOI: 10.1016/j.prevetmed.2018.02.008.
    [10] Barbet-Massin M, Jiguet F, Albert CH, et al. Selecting pseudo-absences for species distribution models: How, where and how many?[J]. Methods Ecol Evol, 2012, 3(2): 327-338. doi: 10.1111/j.2041-210X.2011.00172.x
    [11] Hertzog LR, Besnard A, Jay-Robert P, et al. Field validation shows bias-corrected pseudo-absence selection is the best method for predictive species-distribution modelling[J]. Divers Distrib, 2015, 20(12): 1403-1413. DOI: 10.1111/ddi.12249.
    [12] Dhingra MS, Artois J, Robinson TP, et al. Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation[J]. Elife, 2016, 5: e19571. DOI: 10.7554/eLife.19571.
    [13] Elith J, Graham CH, P. Anderson RP, et al. Novel methods improve prediction of species'distributions from occurrence data[J]. Ecography, 2010, 29(2): 129-151. DOI: 10.1111/j.2006.0906-7590.04596.x.
    [14] Hulse-Post DJ, Sturm-Ramirez KM, Humberd J, et al. Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia[J]. PNAS, 2005, 102(30): 10682-10687. DOI: 10.1073/pnas.0504662102.
    [15] Martin V, Pfeiffer DU, Zhou X, et al. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China[J]. PLoS Pathog, 2011, 7(3): e1001308. DOI: 10.1371/journal.ppat.1001308.
    [16] NASA Socioeconomic Data and Applications Center (SEDAC). Global One-Eighth Degree Population Base Year and Projection Grids Based on the Shared Socioeconomic Pathways, Revision 01[EB/OL]. (2020-12-05)[2020-02-01]. https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-8th-pop-base-year-projection-ssp-2000-2100-rev01/maps.
    [17] Tian L, Liang F, Xu M, et al. Spatio-temporal analysis of the relationship between meteorological factors and hand-foot-mouth disease in Beijing, China[J]. BMC Infect Dis, 2018, 18(1): 158. DOI: 10.1186/s12879-018-3071-3.
    [18] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988, 44(3): 837-845. DOI: 10.2307/2531595.
    [19] Mischler P, Kearney M, McCarroll JC, et al. Environmental and socio-economic risk modelling for Chagas disease in Bolivia[J]. Geospat Health, 2012, 6(3): S59-S66. DOI: 10.4081/gh.2012.123.
    [20] Hengl T, Sierdsema H, Radović A, et al. Spatial prediction of species'distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging[J]. Ecol Model, 2009, 220(24): 3499-3511. DOI: 10.1016/j.ecolmodel.2009.06.038.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  162
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-07
  • 修回日期:  2021-03-05
  • 网络出版日期:  2021-08-13
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回