• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双酚A暴露与肥胖患者脂肪组织NLRP3炎症小体激活的相关性

姬可可 袁少云 周义 姚着猛 洪旭 张小飞 葛晓蕾 汪泳 沈彤

姬可可, 袁少云, 周义, 姚着猛, 洪旭, 张小飞, 葛晓蕾, 汪泳, 沈彤. 双酚A暴露与肥胖患者脂肪组织NLRP3炎症小体激活的相关性[J]. 中华疾病控制杂志, 2021, 25(11): 1297-1302, 1319. doi: 10.16462/j.cnki.zhjbkz.2021.11.011
引用本文: 姬可可, 袁少云, 周义, 姚着猛, 洪旭, 张小飞, 葛晓蕾, 汪泳, 沈彤. 双酚A暴露与肥胖患者脂肪组织NLRP3炎症小体激活的相关性[J]. 中华疾病控制杂志, 2021, 25(11): 1297-1302, 1319. doi: 10.16462/j.cnki.zhjbkz.2021.11.011
JI Ke-ke, YUAN Shao-yun, ZHOU Yi, YAO Zhuo-meng, HONG Xu, ZHANG Xiao-fei, GE Xiao-lei, WANG Yong, SHEN Tong. Correlation between bisphenol A level and activation of NLRP3 inflammasome in adipose tissue of obese patients[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(11): 1297-1302, 1319. doi: 10.16462/j.cnki.zhjbkz.2021.11.011
Citation: JI Ke-ke, YUAN Shao-yun, ZHOU Yi, YAO Zhuo-meng, HONG Xu, ZHANG Xiao-fei, GE Xiao-lei, WANG Yong, SHEN Tong. Correlation between bisphenol A level and activation of NLRP3 inflammasome in adipose tissue of obese patients[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(11): 1297-1302, 1319. doi: 10.16462/j.cnki.zhjbkz.2021.11.011

双酚A暴露与肥胖患者脂肪组织NLRP3炎症小体激活的相关性

doi: 10.16462/j.cnki.zhjbkz.2021.11.011
基金项目: 

国家自然科学基金 81773467

国家自然科学基金 82073594

安徽省转化医学研究院科研基金项目 2017zhyx23

详细信息
    通讯作者:

    沈彤,E-mail: ahmusht@163.com

    汪泳,E-mail: 1378606242@qq.com

  • 中图分类号: R589;R181.31

Correlation between bisphenol A level and activation of NLRP3 inflammasome in adipose tissue of obese patients

Funds: 

National Natural Science Foundation of China 81773467

National Natural Science Foundation of China 82073594

Research Fund Project of Anhui Academy of translational medicine 2017zhyx23

More Information
  • 摘要:   目的  通过临床病例样本检测分析探讨双酚A(bisphenol A, BPA)暴露与肥胖患者脂肪组织NLRP3炎症小体激活的相关性。  方法  纳入代谢减重手术的肥胖患者102例,收集临床资料及人口统计学数据,并采集血、尿和手术切除的内脏脂肪组织标本。液相色谱-质谱联法(liquid chromatography mass spectrometry, LC-MS)检测尿BPA浓度(肌酐校正BPA,简称BPAcr),ELISA检测血清、脂肪组织炎性细胞因子白细胞介素(interleukin, IL)-1β和IL-18含量,免疫荧光法检测脂肪组织NLRP3表达,qRT-PCR和免疫印迹法检测脂肪组织NLRP3激活相关分子的mRNA和蛋白表达水平,分析尿BPAcr与血清和脂肪组织炎性因子水平,以及脂肪组织NLRP3激活的相关性。  结果  肥胖患者尿BPAcr与BMI、血清IL-1β、血清IL-18、脂肪组织炎性因子IL-1β和IL-18水平呈正相关(rs值分别为0.784、0.852、0.737、0.509及0.471,均有P < 0.001)。肥胖患者脂肪组织巨噬细胞(adipose tissue macrophages, ATMs)中NLRP3表达,NLRP3、ASC mRNA表达水平,以及IL-1β、caspase-1蛋白表达水平与尿BPAcr均相关(均有P < 0.05)。  结论  BPA暴露可能通过激活脂肪组织ATMs中NLRP3炎症小体,上调促炎细胞因子的分泌,导致肥胖患者炎症状态。
  • 图  1  肥胖者BMI与尿BPAcr相关散点图

    Figure  1.  Scatter plot of BMI and urine BPAcr in obese people

    图  2  肥胖者血清IL-1β、IL-18与尿BPAcr相关散点图

    Figure  2.  Scatter plot of serum IL-1β, IL-18 and urine BPAcr in obese people

    图  3  肥胖者脂肪组织IL-1β、IL-18与尿BPAcr相关散点图

    Figure  3.  Scatter plot of adipose tissue IL-1β, IL-18 and urine BPAcr in obese people

    图  4  不同尿BPAcr水平肥胖者脂肪组织ATMs中NLRR3表达免疫荧光检测代表图(×400)

    注:细胞核(DAPI标记)为蓝色,ATMs标记物F4/80为绿色,NLRR3表达为红色。

    Figure  4.  Representative images of immunofluorescence detection of NLRR3 expression in ATMs of obese patients with different urine BPAcr levels (×400)

    图  5  不同尿BPAcr肥胖者脂肪组织ASC和NLRR3 mRNA表达的比较(n=102)

    注:与第1四分位数组相比,aP<0.05; bP<0.01; cP<0.001。

    Figure  5.  Comparison of ASC and NLRR3 mRNA expression in adipose tissue of obese patients with different urine BPAcr levels (n=102)

    图  6  不同尿BPAcr肥胖患者脂肪组织caspase-1和IL-1β表达的比较(x±s, n=3)

    注:与第1四分位数组相比,aP<0.05;bP<0.01;cP<0.001。

    Figure  6.  Comparison of caspase-1 and IL-1β levels in adipose tissue of obese patients with different urine BPAcr levels(x±s, n=3)

    表  1  引物序列表

    Table  1.   Primer sequence listing

    基因 上游引物 下游引物
    IL-1β GCGGCATCCAGCTACGAATCTC CGGAGCGTGCAGTTCAGTGATC
    IL-18 AAGATGGCTGCTGAACCAGT GAGGCCGATTTCCTTGGTCA
    Caspase-1 ATGGACAAGTCAAGCCGCACAC TCCCACAAATGCCTTCCCGAATAC
    NLRR3 GCCCAAGGAGGAAGAGGAGGAG GCTTCTGGTTGCTGCTGAGGAC
    ASC TGGACGCCTTGGACCTCACC GAGCATCCAGCAGCCACTCAAC
    β-actin TCGTGCGTGACATTAAGGAGAAGC GGCGTACAGGTCTTTGCGGATG
    下载: 导出CSV

    表  2  研究对象的一般特征[M(P25, P75)]

    Table  2.   Characteristics of the participants [M(P25, P75)]

    变量 合计 尿BPACr水平的四分位数a P
    1st 2nd 3rd 4th
    人数[n(%)] 102(100.0) 25(24.5) 26(25.5) 26(25.5) 25(24.5)
    年龄(x±s, 岁) 31.44±8.07 35.32±9.61 33.04±7.66 27.08±4.46 30.44±7.74 0.001
    性别[n(%)] 0.053
      男 47(46.1) 10(21.3) 7(14.9) 16(34.0) 14(29.7)
      女 55(53.9) 15(27.3) 19(34.5) 10(18.2) 11(20.0)
    BMI (x±s, kg/m2) 41.72±8.02 35.82±3.53 36.81±4.11 42.95±5.26 51.42±7.05 < 0.001
    FBG(mmol/L) 5.68(4.90, 7.73) 5.82(4.87, 8.13) 5.56(4.84, 6.55) 5.32(4.85, 6.82) 6.10(5.44, 9.79) 0.134
    SBP(mm Hg) 134.00(117.00, 150.50) 121.00(108.00, 146.00) 138.00(115.00, 147.50) 135.00(126.00, 152.25) 138.00(121.00, 160.00) 0.233
    DBP(mm Hg) 85.00(74.00, 97.50) 78.00(73.50, 99.00) 87.00(73.50, 101.50) 85.50(76.00, 99.00) 84.00(73.50, 93.50) 0.710
    TC(mmol/L) 4.77(4.06, 5.65) 4.82(4.43, 5.72) 4.78(4.10, 5.64) 4.59(3.84, 6.01) 4.93(3.94, 5.53) 0.933
    TG (mmol/L) 1.82(1.28, 2.68) 1.82(1.18, 2.96) 2.46(1.33, 3.07) 1.56(1.27, 2.44) 1.80(1.27, 2.13) 0.537
    LDL-C (mmol/L) 2.99(2.45, 3.68) 2.96(2.38, 3.43) 3.05(2.55, 3.58) 2.97(2.39, 3.92) 2.99(2.51, 3.71) 0.808
    HDL-C c(mmol/L) 0.97(0.84, 1.11) 1.00(0.89, 1.26) 0.97(0.88, 1.08) 0.97(0.82, 1.09) 0.94(0.82, 1.12) 0.396
        注:a尿BPAcr四分位数间距分组(1st,2nd,3rd,4th分别表示第1、2、3、4个四分位数)。
    下载: 导出CSV
  • [1] Andujar N, Galvez-Ontiveros Y, Zafra-Gomez A, et al. Bisphenol a analogues in food and their hormonal and obesogenic effects: a review[J]. Nutrients, 2019, 11(9): 2136. DOI: 10.3390/nu11092136.
    [2] Di Ciaula A, Portincasa P. Diet and contaminants: driving the rise to obesity epidemics?[J]. Curr Med Chem, 2019, 26(19): 3471-3482. DOI: 10.2174/0929867324666170518095736.
    [3] Lakind JS, Goodman M, Mattison DR. Bisphenol A and indicators of obesity, glucose metabolism/type 2 diabetes and cardiovascular disease: a systematic review of epidemiologic research[J]. Crit Rev Toxicol, 2014, 44(2): 121-150. DOI: 10.3109/10408444.2013.860075.
    [4] Moon MK, Jeong IK, Jung Oh T, et al. Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance[J]. J Endocrinol, 2015, 226(1): 35-42. DOI: 10.1530/JOE-14-0714.
    [5] 李艳茹, 吴亚, 冯月梅, 等. 反式脂肪酸与慢性非传染性疾病关系研究进展[J]. 中华疾病控制杂志, 2020, 24(11): 1332-1337. DOI: 10.16462/j.cnki.zhjbkz.2020.11.017.

    Li YR, Wu ya, Feng YM, et al. Research progress on the relationship between trans fatty acids and chronic non communicable diseases[J]. Chin J Dis Control Prev, 2020, 24(11): 1332-1337. DOI: 10.16462/j.cnki.zhjbkz.2020.11.017.
    [6] Engin A. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation[J]. Obesity & Lipotoxicity, 2017, 960: 221-245. DOI: 10.1007/978-3-319-48382-5.
    [7] Rheinheimer J, de Souza BM, Cardoso NS, et al. Current role of the NLRP3 inflammasome on obesity and insulin resistance: a systematic review[J]. Metab: Clin Exp, 2017, 74: 1-9. DOI: 10.1016/j.metabol.2017.06.002.
    [8] 李应配, 罗时猛, 冷银芝, 等. 双酚A诱导肥胖小鼠脂肪组织巨噬细胞聚集[J]. 安徽医科大学学报, 2016, 51(10): 1464-1467. DOI: 10.19405/j.cnki.issn1000-1492.2016.10.015.

    Li YP, Luo SM, Leng YZ, et al. Adipose tissue macrophage aggregation induced by bisphenol A in obese mice[J]. Acta Universitatis Medicinalis Anhui, 2016, 51(10): 1464-1467. DOI: 10.19405/j.cnki.issn1000-1492.2016.10.015.
    [9] Boutens L, Hooiveld GJ, Dhingra S, et al. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses[J]. Diabetologia, 2018, 61(4): 942-953. DOI: 10.1007/s00125-017-4526-6.
    [10] Li R, Yang S, Gao R, et al. Relationship between the environmental endocrine disruptor bisphenol a and dyslipidemia: a five-year prospective study[J]. Endocr Pract, 2020, 26(4): 399-406. DOI: 10.4158/ep-2019-0384.
    [11] Bellavia A, Cantonwine DE, Meeker JD, et al. Pregnancy urinary bisphenol-A concentrations and glucose levels across BMI categories[J]. Environ Int, 2018, 113: 35-41. DOI: 10.1016/j.envint.2018.01.012.
    [12] Stojanoska MM, Milosevic N, Milic N, et al. The influence of phthalates and bisphenol A on the obesity development and glucose metabolism disorders[J]. Endocrine, 2017, 55(3): 666-681. DOI: 10.1007/s12020-016-1158-4.
    [13] Collin D, Takeishi K, Guzman-Lepe J, et al. Generation of human fatty livers using custom-engineered induced pluripotent stem cells with modifiable SIRT1 metabolism[J]. Cell Metab, 2019, 30(2): 385-401. DOI: 10.1016/j.cmet.2019.06.017.
    [14] Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders[J]. Nature, 2017, 542(7640): 177-185. DOI: 10.1038/nature21363.
    [15] Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489. DOI: 10.1038/s41577-019-0165-0.
    [16] Kelley N, Jeltema D, Duan Y, et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation[J]. Int J Mol Sci, 2019, 20(13): 3328. DOI: 10.3390/ijms20133328.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  152
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-09
  • 修回日期:  2021-05-22
  • 网络出版日期:  2021-12-04
  • 刊出日期:  2021-11-10

目录

    /

    返回文章
    返回