• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由基致衰老的研究进展

杨善岚 吴磊 涂嘉欣 邓莉芳 黄河浪

杨善岚, 吴磊, 涂嘉欣, 邓莉芳, 黄河浪. 自由基致衰老的研究进展[J]. 中华疾病控制杂志, 2022, 26(5): 589-594. doi: 10.16462/j.cnki.zhjbkz.2022.05.017
引用本文: 杨善岚, 吴磊, 涂嘉欣, 邓莉芳, 黄河浪. 自由基致衰老的研究进展[J]. 中华疾病控制杂志, 2022, 26(5): 589-594. doi: 10.16462/j.cnki.zhjbkz.2022.05.017
YANG Shan-lan, WU Lei, TU Jia-xin, DENG Li-fang, HUANG He-lang. Research progress of free radical induced aging[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(5): 589-594. doi: 10.16462/j.cnki.zhjbkz.2022.05.017
Citation: YANG Shan-lan, WU Lei, TU Jia-xin, DENG Li-fang, HUANG He-lang. Research progress of free radical induced aging[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(5): 589-594. doi: 10.16462/j.cnki.zhjbkz.2022.05.017

自由基致衰老的研究进展

doi: 10.16462/j.cnki.zhjbkz.2022.05.017
基金项目: 

国家自然科学基金 81960620

国家自然科学基金 81360446

详细信息
    通讯作者:

    黄河浪,E-mail: hhlang0821@sina.com

  • 中图分类号: R181

Research progress of free radical induced aging

Funds: 

National Natural Science Foundation of China 81960620

National Natural Science Foundation of China 81360446

More Information
  • 摘要: 1954年Harman首次提出的自由基致衰老理论(free radical theory of aging, FRTA)认为,环境和内部代谢产生的自由基会对细胞成分造成损害,进而造成人体功能的损害,加速衰老。人体衰老研究发展迅速,学说众多,争论较大,但自由基理论一直受到广泛关注,多数文献肯定了自由基在致衰老、诱导某些慢性病发生方面的作用。本文从生物医学、分子病理学、流行病学等层面概括性地阐述了自由基的内涵与致病机制,重点介绍了近些年自由基研究的新进展以及与传统认识的差距。同时,本文提出了自由基致衰老的可能路径:自由基持续、动态、循环的作用于机体,当打破某种循环平衡时,衰老才可能发生。该路径为人群预防衰老、延缓衰老减少慢性病等工作带来了机遇与思考。
  • 图  1  自由基和活性氧的区别[42]

    Figure  1.  Distinction between free radicals and ROS

    图  2  ROS渐变机制[50]

    Figure  2.  Gradual mechanism of ROS

  • [1] 联合国人口司. 人口数据[EB/OL]. (2020-10-01)[2021-11-27]. https://www.un.org/development/desa/pd/.

    United Nations Population Division. Population data[EB/OL]. (2020-10-01)[2021-11-27]. https://www.un.org/development/desa/pd/.
    [2] 国家统计局. 人口数据[EB/OL]. (2020-01-30)[2021-11-27]. http://www.stats.gov.cn/.

    National Bureau of Statistics. Population data[EB/OL]. (2020-01-30)[2021-11-27]. http://www.stats.gov.cn/.
    [3] Harman D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009[J]. Biogerontology, 2009, 10(6): 773-781. DOI: 10.1007/s10522-009-9234-2.
    [4] McCord JM, Fridovich I. Superoxide dismutase: the first twenty years (1968-1988)[J]. Free Radic Biol Med, 1988, 5(5-6): 363-369. DOI: 10.1016/0891-5849(88)90109-8.
    [5] Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view[J]. Curr Aging Sci, 2008, 1(1): 10-21. DOI: 10.2174/1874609810801010010.
    [6] Koppenol WH, Sies H. Two centuries since discovery of dawn-of-life molecule[J]. Nature, 2018, 559(7713): 181. DOI: 10.1038/d41586-018-05674-0.
    [7] Studer A, Curran DP. Catalysis of Radical Reactions: A Radical Chemistry Perspective[J]. Angew Chem Int Ed Engl, 2016, 55(1): 58-102. DOI: 10.1002/anie.201505090.
    [8] Hayyan M, Hashim MA, AlNashef IM. Superoxide Ion: Generation and Chemical Implications[J]. Chem Rev, 2016, 116(5): 3029-3085. DOI: 10.1021/acs.chemrev.5b00407.
    [9] Jakubczyk K, Dec K, Kaɫduńska J, et al. Reactive oxygen species- sources, functions, oxidative damage[J]. Pol Merkur Lekarski, 2020, 48(284): 124-127.
    [10] Liu ZQ. Bridging free radical chemistry with drug discovery: A promising way for finding novel drugs efficiently[J]. Eur J Med Chem, 2020, 189: 112020. DOI: 10.1016/j.ejmech.2019.112020.
    [11] Itoh S. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions[J]. Acc Chem Res, 2015, 48(7): 2066-2074. DOI: 10.1021/acs.accounts.5b00140.
    [12] Wang XQ, Gao F, Zhang XZ. Initiator-Loaded Gold Nanocages as a Light-Induced Free-Radical Generator for Cancer Therapy[J]. Angew Chem Int Ed Engl, 2017, 56(31): 9029-9033. DOI: 10.1002/anie.201703159.
    [13] Koltover VK. Free Radical Timer of Aging: from Chemistry of Free Radicals to Systems Theory of Reliability[J]. Curr Aging Sci, 2017, 10(1): 12-17. DOI: 10.2174/1874609809666161009220822.
    [14] Ma S, Fu A, Lim S, et al. MnSOD mediates shear stress-promoted tumor cell migration and adhesion[J]. Free Radic Biol Med, 2018, 129: 46-58. DOI: 10.1016/j.freeradbiomed.2018.09.004.
    [15] Sun Z, Wang X, Liu C, et al. Persistent Free Radicals from Low-Molecular-Weight Organic Compounds Enhance Cross-Coupling Reactions and Toxicity of Anthracene on Amorphous Silica Surfaces under Light[J]. Environ Sci Technol, 2021, 55(6): 3716-3726. DOI: 10.1021/acs.est.0c07472.
    [16] Wang XQ, Gao F, Zhang XZ. Initiator-loaded gold nanocages as a light-induced free-radical generator for cancer therapy[J]. Angew Chem Int Ed Engl, 2017, 56(31): 9029-9033. DOI: 10.1002/anie.201703159.
    [17] Wang Z, Ayarza J, Esser-Kahn AP. Mechanically initiated bulk-scale free-radical polymerization[J]. Angew Chem Int Ed Engl, 2019, 58(35): 12023-12026. DOI: 10.1002/anie.201903956.
    [18] Xie J, Wang C, Wang N, et al. Graphdiyne nanoradioprotector with efficient free radical scavenging ability for mitigating radiation-induced gastrointestinal tract damage[J]. Biomaterials, 2020, 244: 119940. DOI: 10.1016/j.biomaterials.2020.119940.
    [19] Cai K, Shi Y, Cao C, et al. Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes[J]. Chem Sci, 2019, 11(1): 107-112. DOI: 10.1039/c9sc04860j.
    [20] do Vale GT, Leoni D, Sousa AH, et al. Acute restraint stress increases blood pressure and oxidative stress in the cardiorenal system of rats: a role for AT1 receptors[J]. Stress, 2020, 23(3): 328-337. DOI: 10.1080/10253890.2019.1675627.
    [21] Di Meo S, Venditti P. Evolution of the knowledge of free radicals and other oxidants[J]. Oxid Med Cell Longev, 2020, 2020: 9829176. DOI: 10.1155/2020/9829176.
    [22] Srivastava S, Singh D, Patel S, et al. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders[J]. Int J Biol Macromol, 2017, 101: 502-517. DOI: 10.1016/j.ijbiomac.2017.03.100.
    [23] Gasek NS, Kuchel GA, Kirkland JL, et al. Strategies for targeting senescent cells in human disease[J]. Nat Aging, 2021, 1(10): 870-879. DOI: 10.1038/s43587-021-00121-8.
    [24] Kale A, Sharma A, Stolzing A, et al. Role of immune cells in the removal of deleterious senescent cells[J]. Immun Ageing, 2020, 17: 16. DOI: 10.1186/s12979-020-00187-9.
    [25] Weßing J, Ganesamoorthy C, Kahlal S, et al. The mackay-type cluster[Cu43 Al12](Cp*)12 : Open-shell 67-electron superatom with emerging metal-like electronic structure[J]. Angew Chem Int Ed Engl, 2018, 57(44): 14630-14634. DOI: 10.1002/anie.201806039.
    [26] Kimura S, Uejima M, Ota W, et al. An open-shell, luminescent, two-dimensional coordination polymer with a honeycomb lattice and triangular organic radical[J]. J Am Chem Soc, 2021, 143(11): 4329-4338. DOI: 10.1021/jacs.0c13310.
    [27] 杨新平, 王海潮, 谭照峰, 等. OH自由基总反应性的实地测量[J]. 化学学报, 2019, 77(7): 613-624. DOI: 10.6023/A19030094.

    Yang XP, Wang HC, Tan ZF, et al. Observations of OH radical reactivity in field st-udies[J]. Acta Chimica Sinica, 2019, 77(7): 613-624. DOI:10. 6023/A19030094.
    [28] Rossi-Ashton JA, Clarke AK, Unsworth WP, et al. Phosphoranyl radical fragmentation reactions driven by photoredox catalysis[J]. ACS Catal, 2020, 10(13): 7250-7261. DOI: 10.1021/acscatal.0c01923.
    [29] Nguyen HV, Detappe A, Harvey P, et al. Pro-organic radical contrast agents ("pro-ORCAs") for real-time MRI of pro-drug activation in biological systems[J]. Polym Chem, 2020, 11(29): 4768-4779. DOI: 10.1039/d0py00558d.
    [30] Tang B, Li WL, Chang Y, et al. A supramolecular radical dimer: high-efficiency NIR-Ⅱ photothermal conversion and Therapy[J]. Angew Chem Int Ed Engl, 2019, 58(43): 15526-15531. DOI: 10.1002/anie.201910257.
    [31] Sato Y, Yanagita M. Immunology of the ageing kidney[J]. Nat Rev Nephrol, 2019, 15(10): 625-640. DOI: 10.1038/s41581-019-0185-9.
    [32] Kizilay Mancini O, Lora M, Cuillerier A, et al. Mitochondrial oxidative stress reduces the immunopotency of mesenchymal stromal cells in adults with coronary artery disease[J]. Circ Res, 2018, 122(2): 255-266. DOI: 10.1161/CIRCRESAHA.117.311400.
    [33] Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases[J]. Gastroenterology, 2018, 155(3): 629-647. DOI: 10.1053/j.gastro.2018.06.083.
    [34] Schneider JL, Rowe JH, Garcia-de-Alba C, et al. The aging lung: physiology, disease, and immunity[J]. Cell, 2021, 184(8): 1990-2019. DOI: 10.1016/j.cell.2021.03.005.
    [35] Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57. DOI: 10.1038/s41584-020-00533-7.
    [36] Luo YX, Tang X, An XZ, et al. SIRT4 accelerates Ang Ⅱ-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity[J]. Eur Heart J, 2017, 38(18): 1389-1398. DOI: 10.1093/eurheartj/ehw138.
    [37] Kim JS, Kim H, Yim B, et al. Identification and molecular characterization of two Cu/Zn-SODs and Mn-SOD in the marine ciliate Euplotes crassus: Modulation of enzyme activity and transcripts in response to copper and cadmium[J]. Aquat Toxicol, 2018, 199: 296-304. DOI: 10.1016/j.aquatox.2018.03.020.
    [38] Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility[J]. Cell, 2015, 160(5): 816-827. DOI: 10.1016/j.cell.2015.02.010.
    [39] Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier[J]. Nat Rev Drug Discov, 2016, 15(8): 551-567. DOI: 10.1038/nrd.2016.39.
    [40] Jaligama S, Patel VS, Wang P, et al. Radical containing combustion derived particulate matter enhance pulmonary Th17 inflammation via the aryl hydrocarbon receptor[J]. Part Fibre Toxicol, 2018, 15(1): 20. DOI: 10.1186/s12989-018-0255-3.
    [41] Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span[J]. Nat Med, 2019, 25(12): 1822-1832. DOI: 10.1038/s41591-019-0675-0.
    [42] Wang XQ, Wang W, Peng M, et al. Free radicals for cancer theranostics[J]. Biomaterials, 2021, 266: 120474. DOI: 10.1016/j.biomaterials.2020.120474.
    [43] Stone WL, Papas AM. Tocopherols and the etiology of colon cancer[J]. J Natl Cancer Inst, 1997, 89(14): 1006-1014. DOI: 10.1093/jnci/89.14.1006.
    [44] Ornstein MC, Rini BI. Radical shifts in the first-line management of metastatic renal cell carcinoma[J]. Nat Rev Clin Oncol, 2019, 16(2): 71-72. DOI: 10.1038/s41571-018-0146-4.
    [45] Kim EB, Fang X, Fushan AA, et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat[J]. Nature, 2011, 479(7372): 223-227. DOI: 10.1038/nature10533.
    [46] Shi J, Yu W, Xu L, et al. Bioinspired nanosponge for salvaging ischemic stroke via free radical scavenging and self-adapted oxygen regulating[J]. Nano Lett, 2020, 20(1): 780-789. DOI: 10.1021/acs.nanolett.9b04974.
    [47] Dues DJ, Schaar CE, Johnson BK, et al. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans[J]. Free Radic Biol Med, 2017, 108: 362-373. DOI: 10.1016/j.freeradbiomed.2017.04.004.
    [48] Wang XQ, Gao F, Zhang XZ. Initiator-loaded gold nanocages as a light-induced free-radical generator for cancer therapy[J]. Angew Chem Int Ed Engl, 2017, 56(31): 9029-9033. DOI: 10.1002/anie.201703159.
    [49] Huang G, Qiu Y, Yang F, et al. Magnetothermally triggered free-radical generation for deep-seated tumor treatment[J]. Nano Lett, 2021, 21(7): 2926-2931. DOI: 10.1021/acs.nanolett.1c00009.
    [50] Hekimi S, Lapointe J, Wen Y. Taking a "good" look at free radicals in the aging process[J]. Trends Cell Biol, 2011, 21(10): 569-576. DOI: 10.1016/j.tcb.2011.06.008.
    [51] Höhn A, Weber D, Jung T, et al. Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence[J]. Redox Biol, 2017, 11: 482-501. DOI: 10.1016/j.redox.2016.12.001.
    [52] Sishc BJ, Ding L, Nam TK, et al. Avasopasem manganese synergizes with hypofractionated radiation to ablate tumors through the generation of hydrogen peroxide[J]. Sci Transl Med, 2021, 13(593): eabb3768. DOI: 10.1126/scitranslmed.abb3768.
    [53] Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore[J]. Aging Cell, 2017, 16(5): 943-955. DOI: 10.1111/acel.12650.
    [54] Davalli P, Mitic T, Caporali A, et al. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases[J]. Oxid Med Cell Longev, 2016, 2016: 3565127. DOI: 10.1155/2016/3565127.
    [55] Webb M, Sideris DP. Intimate Relations-Mitochondria and Ageing[J]. Int J Mol Sci, 2020, 21(20): 7580. DOI: 10.3390/ijms21207580.
  • 加载中
图(2)
计量
  • 文章访问数:  715
  • HTML全文浏览量:  556
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 修回日期:  2021-12-27
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-05-10

目录

    /

    返回文章
    返回