The rising trend of severe fever with thrombocytopenia syndrome: based on the data of reported cases in Nanjing from 2015 to 2020, China
-
摘要:
目的 了解南京市发热伴血小板减少综合征(severe fever with thrombocytopenia syndrome, SFTS)的报告发病趋势、流行特征,探究重点防控人群、地区及影响因素,为指导制定防控策略、措施和采取干预行动提供科学依据。 方法 描述2015―2020年南京市SFTS流行趋势和季节、人群及空间分布特征,利用全局空间自相关分析、局部空间自相关分析和FleXScan扫描,探索乡镇/街道层面上报告发病的空间异质性和聚集性。 结果 共报告SFTS确诊病例194例,年均报告发病率为0.39/10万,年度变化百分比(annual percent change, APC)为33.43%(95% CI:5.41%~68.89%, P=0.03),2020年相比2019年增加115%(39例)。5―8月占79.38%,7月为高峰占28.87%。平均年龄为64(54, 71)岁,≥60岁占64.43%,45~<60岁占27.32%。农民占61.34%,家务待业占12.89%,离退休人员占11.34%。溧水区报告病例数占46.39%。全局空间自相关Moran’s I=0.58(Z=9.97, P=0.001),局部空间自相关与FleXScan扫描结果显示,溧水区除和凤镇外的7个乡镇/街道与江宁区横溪街道为一级聚集区(LLR=150.24, P=0.001),浦口区江浦街道、桥林街道和星甸街道为二级聚集区(LLR=17.81, P=0.001)。 结论 南京市SFTS报告发病率呈上升趋势,≥45岁人群和农民为重点人群,溧水区为重点防控地区。建议及时开展基于危险因素和趋势研判的专题研究,同时强化和落实综合防控干预措施。 -
关键词:
- 发热伴血小板减少综合征 /
- 流行病学特征 /
- 空间聚集性 /
- 蜱 /
- 趋势
Abstract:Objective To understand the reported incidence trend and epidemic characteristics of severe fever with thrombocytopenia syndrome (SFTS) in Nanjing, exploring the critical prevention and control population, areas, and influencing factors, and providing scientific basis for guiding the formulation of prevention and control strategies, measures and carrying out scientific intervention actions. Methods The reported incidence trend and characteristics of seasonal distribution, population distribution and spatial distribution of SFTS in Nanjing from 2015 to 2020 were described. Global spatial autocorrelation analysis, local spatial autocorrelation analysis, and FleXScan spatial clustering scans were used to explore the spatial heterogeneity and spatial cluster at the town/street level. Results There were 194 SFTS reported confirmed cases. The annual average reported incidence was 0.39/100 000 (0.13/100 000 to 0.86/100 000), and the annual percent change (APC) was 33.43% (95% CI: 5.41 to 68.89, P=0.03). Seventy-three cases were reported in 2020, with an increased rate of 115% when compared to 2019 (39 cases). Among all reported cases, 79.38% were from May to August, and the peak was in July which accounted for 28.87%. The median age was 64 (54, 71) years, of 64.43% were aged 60 or above, and the group of 45- < 60 years was accounted for 27.32%. In terms of occupations, the proportion of farmers was 61.34%, household and unemployed workers was 12.89%, and for retirees was 11.34%. The number of reported cases in Lishui District accounted for 46.39%. Moran's I for global spatial autocorrelation analysis was 0.58 (Z=9.97, P=0.001). Additionally, local spatial autocorrelation analysis and FleXScan spatial clustering scans showed that Seven towns/streets in Lishui District except Hefeng Town and Hengxi Street in Jiangning District were first cluster areas (LLR=150.24, P=0.001). And secondary cluster areas were Jiangpu Street, Qiaolin Street, and Xingdian Street in Pukou District (LLR=17.81, P=0.001). Conclusions The trend of reported incidence of SFTS in Nanjing rise. The critical populations are those ages 45 and older and farmer. Besides, Lishui District would be critical prevention and control area. It is suggested to carry out monographic research which based on risk factors and trend judgement in time, and strengthen and implement comprehensive prevention and control interventions at the same time. -
表 1 2015―2020年南京市报告SFTS病例发病与死亡情况统计
Table 1. Statistics of incidence and death of SFTS reported cases in Nanjing from 2015 to 2020
年份(年) 报告病例数(例) 报告发病率(/10万) 报告死亡数(例) 报告死亡率(/10万) 病死率(%) 2015 11 0.13 1 0.01 9.09 2016 30 0.36 1 0.01 3.33 2017 19 0.23 1 0.01 5.26 2018 27 0.32 2 0.02 7.41 2019 34 0.40 3 0.04 8.82 2020 73 0.86 11 0.13 15.07 合计 194 0.39 19 0.04 9.79 表 2 2015―2020年南京市报告SFTS病例月分布
Table 2. Monthly distribution of SFTS reported cases in Nanjing from 2015 to 2020
月份 2015年(例) 2016年(例) 2017年(例) 2018年(例) 2019年(例) 2020年(例) 合计[n (%)] 1 0 0 0 0 0 0 0(0.00) 2 0 0 0 0 0 0 0(0.00) 3 0 0 1 0 0 0 1(0.52) 4 0 3 1 2 2 1 9(4.64) 5 6 9 2 7 8 10 42(21.65) 6 0 4 3 6 4 15 32(16.49) 7 1 8 3 8 11 25 56(28.87) 8 2 3 4 1 5 9 24(12.37) 9 0 0 1 2 1 5 9(4.64) 10 1 3 3 1 3 8 19(9.79) 11 1 0 1 0 0 0 2(1.03) 12 0 0 0 0 0 0 0(0.00) 合计 11 30 19 27 34 73 194(100.00) 表 3 2015―2020年南京市报告SFTS病例人群分布特征[n (%)]
Table 3. Demographic characteristics of SFTS reported cases in Nanjing from 2015 to 2020 [n (%)]
变量 2015年(n=11) 2016年(n=30) 2017年(n=19) 2018年(n=27) 2019年(n=34) 2020年(n=73) 合计(N=194) 性别 男 8(72.73) 14(46.67) 9(47.37) 14(51.85) 14(41.18) 38(52.05) 97(50.00) 女 3(27.27) 16(53.33) 10(52.63) 13(48.15) 20(58.82) 35(47.95) 97(50.00) 年龄(岁) 0~<15 0(0.00) 0(0.00) 0(0.00) 1(3.70) 0(0.00) 0(0.00) 1(0.52) 15~<30 0(0.00) 3(10.00) 0(0.00) 2(7.41) 1(2.94) 2(2.74) 8(4.12) 30~<45 0(0.00) 4(13.33) 0(0.00) 1(3.70) 1(2.94) 1(1.37) 7(3.61) 45~<60 3(27.27) 7(23.33) 7(36.84) 9(33.33) 8(23.53) 19(26.03) 53(27.32) ≥60 8(72.73) 16(53.33) 12(63.16) 14(51.85) 24(70.59) 51(69.86) 125(64.43) 人群分类 农民 7(63.64) 14(46.67) 12(63.16) 19(70.37) 22(64.71) 45(61.64) 119(61.34) 家务待业 3(27.27) 7(23.33) 3(15.79) 1(3.70) 4(11.76) 7(9.59) 25(12.89) 离退休人员 1(9.09) 3(10.00) 3(15.79) 0(0.00) 5(14.71) 10(13.70) 22(11.34) 工人 0(0.00) 1(3.33) 1(5.26) 2(7.41) 3(8.82) 6(8.22) 13(6.70) 其他 0(0.00) 5(16.67) 0(0.00) 5(18.52) 0(0.00) 5(6.85) 15(7.73) 表 4 2015―2020年南京市报告SFTS病例数和发病率地区分布(区层级)[n (/10万)]
Table 4. Spatial distribution of SFTS reported cases and incidence in Nanjing from 2015 to 2020 (District level) [n (/100 000)]
地区 2015年 2016年 2017年 2018年 2019年 2020年 合计 溧水区 6(1.40) 11(2.54) 8(1.84) 11(2.37) 13(2.75) 41(8.70) 90(3.27) 江宁区 2(0.17) 5(0.42) 4(0.34) 4(0.32) 6(0.47) 14(1.04) 35(0.46) 浦口区 1(0.14) 3(0.41) 2(0.59) 6(1.66) 5(1.33) 11(2.92) 28(1.17) 鼓楼区 0(0.00) 4(0.31) 1(0.08) 2(0.17) 5(0.45) 2(0.18) 14(0.20) 六合区 1(0.14) 2(0.28) 3(0.43) 2(0.27) 0(0.00) 2(0.27) 10(0.23) 玄武区 0(0.00) 2(0.30) 0(0.00) 0(0.00) 1(0.17) 1(0.17) 4(0.11) 江北新区 0(0.00) 1(0.45) 0(0.00) 0(0.00) 2(0.29) 0(0.00) 3(0.12) 雨花台区 0(0.00) 0(0.00) 1(0.25) 1(0.22) 0(0.00) 1(0.21) 3(0.11) 秦淮区 0(0.00) 0(0.00) 0(0.00) 1(0.10) 1(0.10) 0(0.00) 2(0.03) 栖霞区 1(0.15) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 1(0.14) 2(0.05) 高淳区 0(0.00) 1(0.23) 0(0.00) 0(0.00) 1(0.22) 0(0.00) 2(0.08) 建邺区 0(0.00) 1(0.23) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 1(0.04) 合计 11(0.13) 30(0.36) 19(0.23) 27(0.32) 34(0.40) 73(0.86) 194(0.39) 表 5 2015―2020年南京市报告SFTS病例FleXScan空间聚集性扫描结果(乡镇/街道层级)
Table 5. Spatial scanning results of scrub typhus by FleXScan spatial clustering scans in Nanjing from 2015 to 2020 (Township/street level)
级别 聚集地区 报告病例数 LLR P值 一级 溧水区(永阳、石湫、柘塘、东屏、洪蓝、白马、晶桥),江宁区(横溪) 98 150.24 0.001 二级 溧水区(江浦、桥林、星甸) 27 17.81 0.001 -
[1] 房恩岳, 王玲, 李玉华. 病毒性出血热的研究进展[J]. 中国生物制品学杂志, 2019, 32(6): 707-712. DOI: 10.13200/j.cnki.cjb.002643.Fang EY, Wang L, Li YH. Progress in research on viral hemorrhagic fevers[J]. Chin J Bio, 2019, 32(6): 707-712. DOI: 10.13200/j.cnki.cjb.002643. [2] Yu XJ, Liang MF, Zhang SY, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China[J]. N Engl J Med, 2011, 364(16): 1523-1532. DOI: 10.1056/NEJMoa1010095. [3] 中华人民共和国卫生部. 发热伴血小板减少综合征防治指南(2010版)[J]. 中华临床感染病杂志, 2011, 4(4): 193-194. DOI: 10.3760/cma.j.issn.1674-2397.2011.04.001.The Ministry of Health of People's Republic of China. Guideline for prevention and treatment of sever fever with thrombocytopenia syndrome (2010 vesrion)[J]. Chin J Clin Infect Dis, 2011, 4(4): 193-194. DOI: 10.3760/cma.j.issn.1674-2397.2011.04.001. [4] Li J, Li S, Yang L, et al. Severe fever with thrombocytopenia syndrome virus: a highly lethal bunyavirus[J]. Crit Rev Microbiol, 2021, 47(1): 112-125. DOI: 10.1080/1040841X.2020.1847037. [5] Sun JM, Lu L, Wu HX, et al. The changing epidemiological characteristics of severe fever with thrombocytopenia syndrome in China, 2011-2016[J]. Sci Rep, 2017, 7(1): 9236. DOI: 10.1038/s41598-017-08042-6. [6] Miao D, Liu MJ, Wang YX, et al. Epidemiology and ecology of severe fever with thrombocytopenia syndrome in China, 2010-2018[J]. Clin Infect Dis, 2020, 73(11): e3851-e3858. DOI: 10.1093/cid/ciaa1561. [7] Hu J, Shi C, Li Z, et al. A cluster of cases of severe fever with thrombocytopenia syndrome bunyavirus infection in China, 1996: A retrospective serological study[J]. PLoS Negl Trop Dis, 2018, 12(6): e0006603. DOI: 10.1371/journal.pntd.0006603. [8] 张大卫. 江苏省发热伴血小板减少综合征流行病学特征分析及生态位模型研究[D]. 南京: 东南大学, 2019.Zhang DW. Epidemiological characteristics and ecological niche model of severe fever with thrombocytopenia syndrome in Jiangsu Province[D]. Nanjing: Southeast University, 2019. [9] Gong L, Wang JS, Zhang Y, et al. Socioeconomic burden of severe fever with thrombocytopenia syndrome in endemic areas of Anhui Province, eastern China[J]. Zoonoses Public Health, 2019, 66(7): 879-885. DOI: 10.1111/zph.12634. [10] 李婷, 何金戈, 杨长虹, 等. SaTScan与FleXScan软件空间扫描统计量法在肺结核疫情空间聚集性研究中的应用比较[J]. 中华流行病学杂志, 2020, 41(2): 207-212. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.013.Li T, He JG, Yang CH, et al. A comparative study on SaTScan and FleXScan software for spatial clustering analysis regarding the incidence of pulmonary tuberculosis[J]. Chin J Epidemiol, 2020, 41(2): 207-212. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.013. [11] Yamaoka K, Suzuki M, Inoue M, et al. Spatial clustering of suicide mortality and associated community characteristics in Kanagawa prefecture, Japan, 2011-2017[J]. BMC Psychiatry, 2020, 20(1): 74. DOI: 10.1186/s12888-020-2479-7. [12] 马涛, 徐庆, 李晨, 等. 2010-2016年南京市发热伴血小板减少综合征流行特征分析[J]. 现代预防医学, 2017, 44(16): 2890-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201716003.htmMa T, Xu Q, Li C, et al. Epidemiological characteristics of severe fever with thrombocytopenia syndrome in Nanjing, China from 2010 to 2016[J]. Mod Pre Med, 2017, 44(16): 2890-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201716003.htm [13] 李昱, 周航, 牟笛, 等. 中国2011-2014年发热伴血小板减少综合征流行特征分析[J]. 中华流行病学杂志, 2015, 36(6): 598-602. DOI: 10.3760/cma.j.issn.0254-6450.2015.06.013.Li Y, Zhou H, Mu D, et al. Epidemiological analysis on severe fever with thrombocytopenia syndrome under the national surveillance data from 2011 to 2014, China[J]. Chin J Epidemiol, 2015, 36(6): 598-602. DOI: 10.3760/cma.j.issn.0254-6450.2015.06.013. [14] Wu H, Wu C, Lu Q, et al. Spatial-temporal characteristics of severe fever with thrombocytopenia syndrome and the relationship with meteorological factors from 2011 to 2018 in Zhejiang Province, China[J]. PLoS Negl Trop Dis, 2020, 14(4): e0008186. DOI: 10.1371/journal.pntd.0008186. [15] 姜晓林, 张晓梅, 逄博, 等. 山东省发热伴血小板减少综合征时空流行特征分析[J]. 中国人兽共患病学报, 2020, 36(9): 740-745. DOI: 10.3969/j.issn.1002-2694.2020.00.112.Jiang XL, Zhang XM, Pang B, et al. Temporal-spatial Analysis of severe fever with thrombocytopenia syndrome (SFTS) in Shandong Province, China[J]. Chin J Zoonoses, 2020, 36(9): 740-745. DOI: 10.3969/j.issn.1002-2694.2020.00.112. [16] Kobayashi Y, Kato H, Yamagishi T, et al. Severe fever with thrombocytopenia syndrome, Japan, 2013-2017[J]. Emerg Infect Dis, 2020, 26(4): 692-699. DOI: 10.3201/eid2604.191011. [17] Zhuang L, Sun Y, Cui XM, et al. Transmission of severe fever with thrombocytopenia syndrome virus by Haemaphysalis longicornis ticks, China[J]. Emerg Infect Dis, 2018, 24(5): 868-871. DOI: 10.3201/eid2405.151435. [18] Sun JM, Wu HX, Lu L, et al. Factors associated with spatial distribution of severe fever with thrombocytopenia syndrome[J]. Sci Total Environ, 2021, 750: 141522. DOI: 10.1016/j.scitotenv.2020.141522. [19] Miao D, Dai K, Zhao GP, et al. Mapping the global potential transmission hotspots for severe fever with thrombocytopenia syndrome by machine learning methods[J]. Emerg Microbes Infect, 2020, 9(1): 817-826. DOI: 10.1080/22221751.2020.1748521. [20] Li H, Lu QB, Xing B, et al. Epidemiological and clinical features of laboratory-diagnosed severe fever with thrombocytopenia syndrome in China, 2011-17: a prospective observational study[J]. Lancet Infect Dis, 2018, 18(10): 1127-1137. DOI: 10.1016/S1473-3099(18)30293-7. [21] 吴昊澄, 徐校平, 吴晨, 等. 浙江省2011-2015年发热伴血小板减少综合征发病空间预测[J]. 中华流行病学杂志, 2016, 37(11): 1485-1490. DOI: 10.3760/cma.j.issn.0254-6450.2016.11.011.Wu HC, Xu XP, Wu C, et al. Spatial analysis and prediction of severe fever with thrombocytopenia syndrome in Zhejiang Province, 2011-2015[J]. Chin J Epidemiol, 2016, 37(11): 1485-1490. DOI: 10.3760/cma.j.issn.0254-6450.2016.11.011. [22] 胡文穗, 刘伟, 刘远, 等. 广州市2010-2019年肾综合征出血热流行特征及时空分布动态变化[J]. 中华流行病学杂志, 2020, 41(12): 2087-2092. DOI: 10.3760/cma.j.cn112338-20200522-00755.Hu WS, Liu W, Liu Y, et al. Epidemic characteristics and dynamic changes of spatio-temporal distribution of hemorrhagic fever with renal syndrome in Guangzhou, 2010-2019[J]. Chin J Epidemiol, 2020, 41(12): 2087-2092. DOI: 10.3760/cma.j.cn112338-20200522-00755. [23] 尤爱国, 杜燕华, 黄学勇, 等. 河南省2014-2016年发热伴血小板减少综合征时空分布特征研究[J]. 中华流行病学杂志, 2017, 38(10): 1386-1389. DOI: 10.3760/cma.j.issn.0254-6450.2017.10.018.You AG, Du YH, Huang XY, et al. Characteristics of spatiotemporal distribution on severe fever with thrombocytopenia syndrome in Henan Province[J]. Chin J Epidemiol, 2017, 38(10): 1386-1389. DOI: 10.3760/cma.j.issn.0254-6450.2017.10.018. [24] Du YH, Cheng NN, Li Y, et al. Seroprevalance of antibodies specific for severe fever with thrombocytopenia syndrome virus and the discovery of asymptomatic infections in Henan Province, China[J]. PLoS Negl Trop Dis, 2019, 13(11): e0007242. DOI: 10.1371/journal.pntd.0007242. [25] 马涛, 洪镭, 杜雪飞, 等. 2014-2019年南京市猩红热流行特征和时空聚集性[J]. 中华疾病控制杂志, 2021, 25(3): 346-351. DOI: 10.16462/j.cnki.zhjbkz.2021.03.018.Ma T, Hong L, Du XF, et al. Epidemiological characteristics and temporal-spatial clustering of scarlet fever in Nanjing from 2014 to 2019[J]. Chin J Dis Control Prev, 2021, 25(3): 346-351. DOI: 10.16462/j.cnki.zhjbkz.2021.03.018. [26] 马涛, 谢国祥, 孙红敏, 等. 2009-2016年南京市重症手足口病流行特征和时空聚集性分析[J]. 中华疾病控制杂志, 2018, 22(11): 1138-1143. DOI: 10.16462/j.cnki.zhjbkz.2018.11.011.Ma T, Xie GX, Sun HM, et al. Epidemiological characteristics and temporal-spatial clustering analysis of severe hand-foot-mouth disease in Nanjing from 2009 to 2016[J]. Chin J Dis Control Prev, 2018, 22(11): 1138-1143. DOI: 10.16462/j.cnki.zhjbkz.2018.11.011. [27] 曹琛, 吴家兵, 曹明华, 等. 安徽省2011-2015年发热伴血小板减少综合征流行特征分析[J]. 中华疾病控制杂志, 2016, 20(8): 792-795. DOI: 10.16462/j.cnki.zhjbkz.2016.08.010.Cao C, Wu JB, Cao MH, et al. Epidemiological analysis on severe fever with thrombocytopenia syndrome in Anhui Province, 2011-2015[J]. Chin J Dis Control Prev, 2016, 20(8): 792-795. DOI: 10.16462/j.cnki.zhjbkz.2016.08.010. [28] Wang X, Qi C, Zhang DD, et al. Epidemic character and environmental factors in epidemic areas of severe fever with thrombocytopenia syndrome in Shandong Province[J]. Ticks Tick Borne Dis, 2021, 12(1): 101593. DOI: 10.1016/j.ttbdis.2020.101593. [29] 胡媛媛. 不同蜱种对发热伴血小板减少综合征病毒传播能力的研究[D]. 合肥: 安徽医科大学, 2020.Hu YY. Study on the transmission of severe fever with thrombocytopenia syndrome virus in different tick species[D]. Hefei: Anhui Medical University, 2020. [30] 马涛, 谢国祥, 徐庆, 等. 2011-2016年南京市肾综合征出血热流行特征分析[J]. 现代预防医学, 2017, 44(23): 4231-4234, 4247. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201723003.htmMa T, Xie GX, Xu Q, et al. Epidemiological characteristics of hemorrhagic fever with renal syndrome in Nanjing, China, 2011-2016[J]. Mod Prev Med, 2017, 44(23): 4231-4234, 4247. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201723003.htm [31] Bopp NE, Kaiser JA, Strother AE, et al. Baseline mapping of severe fever with thrombocytopenia syndrome virology, epidemiology and vaccine research and development[J]. NPJ Vaccines, 2020, 5(1): 111. DOI: 10.1038/s41541-020-00257-5.