-
摘要:
目的 探讨连云港市高血压人群内脏脂肪指数(visceral adiposity index, VAI)水平与新发高尿酸血症(hyperuricemia, HUA)的相关性,为HUA的早期预防以及疾病控制提供参考和依据。 方法 本研究来自中国脑卒中一级预防试验的尿酸子研究,共10 513名尿酸正常[尿酸<357 μmol/L (6 mg/dL)]的高血压患者纳入分析。本研究主要终点为新发HUA,定义为末次随访男性血尿酸浓度≥417 μmol/L(7 mg/dL)或女性血尿酸浓度≥357 μmol/L(6 mg/dL)。 结果 本研究共纳入了10 513例尿酸正常的高血压受试者。平均随访4.4年之后,共有1 642(15.6%)例受试者发生了HUA。分析结果显示,与VAI<2.98(第一至三分位)的受试者相比,VAI≥2.98(第四分位)的受试者新发HUA的发生风险升高(13.8% vs. 21.1%;OR: 1.17;95% CI:1.01~1.36;P<0.001)。此外,分层分析显示这种风险关系独立于组成VAI的四个指标(交互作用均有P>0.05)。 结论 在连云港市的高血压人群中,VAI越大的人群患上HUA的风险越高。 Abstract:Objective The relation between visceral adiposity index (VAI) and new-onset hyperuricemia remains largely understudied. This study seeks to further investigate the association between VAI and the risk of hyperuricemia by examining possible effect modifies in hypertensive patients. Methods A total of 10 513 hypertensive patients with normal uric acid (UA) concentrations [ < 357 μmol/L (6 mg/dL)] who participated the UA Sub-study of the China Stroke Primary Prevention Trial (CSPPT) were enrolled. Our primary outcome was new-onset hyperuricemia, which was defined as a UA concentration ≥417 μmol/L (7 mg/dL) in men or ≥357 μmol/L (6 mg/dL) in women at the exit visit. Results Over a median follow-up of 4.4 years, 1 642 (15.6%) participants developed new-onset hyperuricemia. When VAI was assessed as quartiles, a significantly higher risk of new-onset hyperuricemia was found in participants in quartile 4 (≥2.98; OR: 1.17; 95% CI: 1.01-1.36) compared with those in quartile 1-3 (< 2.98). Furthermore, the positive relation was independent of abnormal VAI components or numbers of abnormal VAI components (all Pinteractions > 0.05). Conclusions There is a positive relationship between baseline VAI and the risk of new-onset hyperuricemia in a sample of Chinese hypertensive individuals. -
Key words:
- Visceral adiposity index /
- Uric acid /
- New-onset hyperuricemia /
- Hypertension
-
表 1 根据基线VAI四等分的研究对象的基本特征(x±s)
Table 1. Characteristics of study participants by quartiles of visceral adiposity index (x±s)
变量 VAI P值 第一等分组(<1.18) 第二等分组(1.18~1.87) 第三等分组(1.87~2.98) 第四等分组(≥2.98) 例数 2 628 2 628 2 628 2 629 年龄(岁) 60.0±7.6 59.3±7.5 59.3±7.4 59.1±7.2 <0.001 男性[n (%)] 1 637(62.3) 837(31.8) 521(19.8) 322(12.2) <0.001 WC(cm) 79.8±8.4 83.8±9.1 86.8±8.9 89.2±8.5 <0.001 BMI(kg/m2) 23.7±3.0 25.1±3.3 26.3±3.4 27.0±3.4 <0.001 目前吸烟[n(%)] 971(36.9) 512(19.5) 321(12.2) 221(8.4) <0.001 目前饮酒[n(%)] 1 015(38.6) 455(17.3) 289(11.0) 199(7.6) <0.001 基线SBP(kPa) 168.8±20.6 168.4±20.9 169.1±21.3 169.5±20.3 0.320 基线DBP(kPa) 95.2±12.1 94.6±11.9 94.9±11.6 95.1±11.6 0.299 治疗过程平均SBP(kPa) 139.1±10.8 138.9±10.7 139.3±10.9 139.8±10.9 0.014 治疗过程平均DBP(kPa) 83.3±7.2 83.1±7.2 83.1±7.0 83.4±7.0 0.330 TC(mmol/L) 5.6±1.1 5.7±1.1 5.8±1.2 5.8±1.3 <0.001 FPG(mmol/L) 5.8±1.4 6.0±1.7 6.1±1.9 6.4±2.3 <0.001 TG(mmol/L) 0.9±0.2 1.3±0.3 1.7±0.4 2.7±2.1 <0.001 HDL-C(mmol/L) 1.6±0.4 1.4±0.3 1.3±0.2 1.1±0.2 <0.001 TG/HDL-C 0.8±0.4 1.2±0.6 1.5±1.0 2.1±2.2 <0.001 同型半胱氨酸(μmol/L) 14.7±8.9 13.9±7.9 14.0±8.6 13.7±8.0 <0.001 肾小球滤过率(mL/min/1.73m2) 93.6±11.1 93.6±11.7 95.1±11.6 98.6±12.0 <0.001 尿酸(μmol/L) 266.6±52.3 261.3±52.7 263.4±51.3 268.4±51.4 <0.001 服用降压药[n(%)] 1 007(38.3) 1 214(46.2) 1 328(50.5) 1 438(54.7) <0.001 服用降糖药[n(%)] 30(1.1) 35(1.3) 55(2.1) 72(2.7) <0.001 服用抗血小板药[n(%)] 93(3.5) 85(3.2) 89(3.4) 94(3.6) 0.901 表 2 基线VAI与新发HUA的多元回归分析
Table 2. The association between baseline visceral adiposity index and new-onset hyperuricemia
VAI 例数/总人数(%) 模型一 模型二 模型三 OR (95% CI)值 P值 OR (95% CI)值 P值 OR (95% CI)值 P值 四等分组 第一等分组(<1.18) 276/2 628(10.5) 1.00 1.00 1.00 第二等分组(1.18~<1.87) 365/2 628(13.9) 1.12(0.94~1.34) 0.025 1.16(0.97~1.40) 0.107 1.10(0.91~1.32) 0.327 第三等分组(1.87~<2.98) 447/2 628(17.0) 1.25(1.04~1.49) <0.001 1.30(1.08~1.57) 0.005 1.18(0.97~1.43) 0.106 第四等分组(≥2.98) 554/2 629(21.1) 1.42(1.19~1.69) <0.001 1.52(1.26~1.83) <0.001 1.33(1.06~1.65) 0.012 趋势性检验 <0.001 <0.001 0.010 二分组 第一至三等分组(<2.98) 1 088/7 884(13.8) 1.00 1.00 1.00 第四等分组(≥2.98) 554/2 629(21.1) 1.23(1.09~1.40) <0.001 1.27(1.12~1.45) <0.001 1.17(1.01~1.36) 0.039 注:模型一调整变量:年龄、性别和基线尿酸; 模型二调整变量:年龄、性别、基线尿酸、FPG、总胆固醇、同型半胱氨酸、肾小球滤过率、基线SBP、饮酒、吸烟、降压药、治疗分组和治疗过程SBP; 模型三调整变量:年龄、性别、基线尿酸、FPG、总胆固醇、同型半胱氨酸、肾小球滤过率、基线SBP、饮酒、吸烟、降压药、治疗分组、治疗过程SBP、BMI、腰围和TG/HDL-C。 表 3 基线VAI与尿酸改变的回归分析a
Table 3. The association between baseline visceral adiposity index and change in uric acid concentrations a
VAI 尿酸改变(x±s, μmol/L) 模型一 模型二 模型三 β(95% CI)值 P值 β(95% CI)值 P值 β(95% CI)值 P值 四等分组 第一等分组(<1.18) 40.7±64.4 0.00 0.00 0.00 第二等分组(1.18~<1.87) 41.8±62.8 5.53(2.02~9.04) 0.002 6.65(3.12~10.17) <0.001 4.47(0.86~8.08) 0.015 第三等分组(1.87~<2.98) 42.1±65.5 8.81(5.19~12.43) <0.001 10.40(6.72~14.08) <0.001 6.25(2.28~10.21) 0.002 第四等分组(≥2.98) 42.2±66.9 12.12(8.39~15.84) <0.001 14.63(10.72~18.54) <0.001 8.32(3.49~13.15) <0.001 趋势性检验 <0.001 <0.001 <0.001 二分组 第一等分组(<1.18) 40.7±64.4 0.00 0.00 0.00 第二至四等分组(≥1.18) 42.1±65.1 6.64(3.76~9.52) <0.001 9.89(6.83~12.95) <0.001 5.39(2.08~8.71) 0.001 注:a尿酸改变=出组尿酸-基线尿酸;模型一调整变量:年龄、性别和基线尿酸; 模型二调整变量:年龄、性别、基线尿酸、FPG、总胆固醇、同型半胱氨酸、肾小球滤过率、基线SBP、饮酒、吸烟、降压药、治疗分组和治疗过程SBP; 模型三调整变量:年龄、性别、基线尿酸、FPG、总胆固醇、同型半胱氨酸、肾小球滤过率、基线SBP、饮酒、吸烟、降压药、治疗分组、治疗过程SBP、BMI、WC和TG/HDL-C。 表 4 单个VAI成分对VAI与新发HUA关系的分层分析a[n(%)]
Table 4. Stratified analysis of the impact of single VAI components on the relationship between VAI and new-onset hyperuricemia a[n(%)]
项目 第一至三等分组(<2.98) 第四等分组(≥2.98) 调整模型OR(95% CI)值 交互作用P值 升高的BMI 0.658 是 285/1 429(19.9) 232/931(24.9) 1.12(0.89~1.40) 否 803/6 455(12.4) 322/1 698(19.0) 1.19(1.00~1.42) 升高的WC 0.864 是 671/4 042(16.6) 494/2 260(21.9) 1.16(0.99~1.35) 否 417/3 842(10.9) 60/369(16.3) 1.12(0.81~1.56) 升高的TG 0.66 是 223/1 435(15.5) 518/2 445(21.2) 1.28(1.05~1.56) 否 865/6 449(13.4) 36/184(19.6) 1.16(0.77~1.74) 降低的HDL-C 0.877 是 329/2 158(15.2) 459/2 192(20.9) 1.10(0.92~1.33) 否 759/5 726(13.3) 95/437(21.7) 1.13(0.94~1.35) 异常VAI成分的数量 0.932 ≤1 578/5 053(11.4) 14/89(15.7) 1.08(0.58~2.03) 1~<3 332/1 945(17.1) 101/587(17.2) 1.06(0.80~1.39) ≥3 178/886(20.1) 439/1 953(22.5) 1.23(0.98~1.53) 注:a升高的BMI定义为BMI≥28.0 kg/m2; 升高的WC定义为女性WC≥80.0 cm或者男性WC≥90.0 cm; 升高的TG定义为TG≥1.70 mmo l/L; 降低的HDL-C定义为女性HDL-C<1.30 mmol/L或者男性HDL-C<1.04 mmol/L。 -
[1] Liu R, Han C, Wu D, et al. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis[J]. Biomed Res Int, 2015, 2015: 762820. DOI: 10.1155/2015/762820. [2] Kumar AUA, Browne L, Li X, et al. Temporal trends in hyperuricaemia in the Irish health system from 2006-2014: A cohort study[J]. PLoS One, 2018, 13(5): e0198197. DOI: 10.1371/journal.pone.0198197. [3] Dalbeth N, Merriman TR, Stamp LK. Gout[J]. Lancet, 2016, 388(10055): 2039-2052. DOI: 10.1016/S0140-6736(16)00346-9. [4] Braga F, Pasqualetti S, Ferraro S, et al. Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis[J]. Clin Chem Lab Med, 2016, 54(1): 7-15. DOI: 10.1515/cclm-2015-0523. [5] Zhou C, Liu M, Zhang Z, et al. Positive association of serum uric acid with new-onset diabetes in Chinese women with hypertension in a retrospective analysis of the China Stroke Primary Prevention Trial[J]. Diabetes Obes Metab, 2020, 22(9): 1598-1606. DOI: 10.1111/dom.14072. [6] Maruhashi T, Hisatome I, Kihara Y, et al. Hyperuricemia and endothelial function: From molecular background to clinical perspectives[J]. Atherosclerosis, 2018, 278: 226-231. DOI: 10.1016/j.atherosclerosis.2018.10.007. [7] Himbert C, Delphan M, Scherer D, et al. Signals from the Adipose Microenvironment and the Obesity-Cancer Link-A Systematic Review[J]. Cancer Prev Res (Phila), 2017, 10(9): 494-506. DOI: 10.1158/1940-6207.CAPR-16-0322. [8] Nathan DM. Diabetes: Advances in Diagnosis and Treatment[J]. JAMA, 2015, 314(10): 1052-1062. DOI: 10.1001/jama.2015.9536. [9] Liu M, Zhang Z, Zhou C, et al. Relationship of Body Mass Index and Waist Circumference With Risk of New-Onset Proteinuria in Hypertensive Patients[J]. J Clin Endocrinol Metab, 2020, 105(3): dgaa026. DOI: 10.1210/clinem/dgaa026. [10] Amato MC, Giordano C. Visceral adiposity index: an indicator of adipose tissue dysfunction[J]. Int J Endocrinol, 2014, 2014: 730827. DOI: 10.1155/2014/730827. [11] Dong H, Xu Y, Zhang X, et al. Visceral adiposity index is strongly associated with hyperuricemia independently of metabolic health and obesity phenotypes[J]. Sci Rep, 2017, 7(1): 8822. DOI: 10.1038/s41598-017-09455-z. [12] Liu XZ, Li HH, Huang S, et al. Association between hyperuricemia and nontraditional adiposity indices[J]. Clin Rheumatol, 2019, 38(4): 1055-1062. DOI: 10.1007/s10067-018-4374-x. [13] Rivera-Paredez B, Macias-Kauffer L, Fernandez-Lopez JC, et al. Influence of genetic and non-genetic risk factors for serum uric acid levels and hyperuricemia in Mexicans[J]. Nutrients, 2019, 11(6): 1336. DOI: 10.3390/nu11061336. [14] Qin X, Li Y, He M, et al. Folic acid therapy reduces serum uric acid in hypertensive patients: a substudy of the China Stroke Primary Prevention Trial (CSPPT)[J]. Am J Clin Nutr, 2017, 105(4): 882-889. DOI: 10.3945/ajcn.116.143131. [15] Qin X, Spence JD, Li J, et al. Interaction of serum vitamin B12 and folate with MTHFR genotypes on risk of ischemic stroke[J]. Neurology, 2020, 94(11): e1126-e1136. DOI: 10.1212/WNL.0000000000008932. [16] Qin X, Shen L, Zhang R, et al. Effect of folic acid supplementation on cancer risk among adults with hypertension in China: A randomized clinical trial[J]. Int J Cancer, 2017, 141(4): 837-847. DOI: 10.1002/ijc.30094. [17] Qin X, Li J, Zhang Y, et al. Effect of folic acid supplementation on risk of new-onset diabetes in adults with hypertension in China: Findings from the China Stroke Primary Prevention Trial (CSPPT)[J]. J Diabetes, 2016, 8(2): 286-294. DOI: 10.1111/1753-0407.12346. [18] Wang B, Wu H, Li Y, et al. Effect of long-term low-dose folic acid supplementation on degree of total homocysteine-lowering: major effect modifiers[J]. Br J Nutr, 2018, 120(10): 1122-1130. DOI: 10.1017/S0007114518002477. [19] He M, Qin X, Cui Y, et al. Prevalence of unrecognized lower extremity peripheral arterial disease and the associated factors in chinese hypertensive adults[J]. Am J Cardiol, 2012, 110(11): 1692-1698. DOI: 10.1016/j.amjcard.2012.07.038. [20] Xia MF, Lin HD, Chen LY, et al. Association of visceral adiposity and its longitudinal increase with the risk of diabetes in Chinese adults: A prospective cohort study[J]. Diabetes Metab Res Rev, 2018, 34(7): e3048. DOI: 10.1002/dmrr.3048. [21] Qin X, Shen L, Zhang R, et al. Effect of folic acid supplementation on cancer risk among adults with hypertension in China: A randomized clinical trial[J]. Int J Cancer, 2017, 141(4): 837-847. DOI: 10.1002/ijc.30094. [22] Xia MF, Chen Y, Lin HD, et al. A indicator of visceral adipose dysfunction to evaluate metabolic health in adult Chinese[J]. Sci Rep, 2016, 6: 38214. DOI: 10.1038/srep38214. [23] Xia MF, Lin HD, Chen LY, et al. Association of visceral adiposity and its longitudinal increase with the risk of diabetes in Chinese adults: A prospective cohort study[J]. Diabetes Metab Res Rev, 2018, 34(7): e3048. DOI: 10.1002/dmrr.3048. [24] Goodpaster BH KS, Resnick H, Kelley DE, et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women[J]. Diabetes Care, 2003, 26(2): 372-379. DOI: 10.2337/diacare.26.2.372. [25] Kanaya AM, Harris T, Goodpaster BH, et al. Adipocytokines attenuate the association between visceral adiposity and diabetes in older adults[J]. Diabetes Care, 2004, 27(6): 1375-1380. DOI: 10.2337/diacare.27.6.1375. [26] Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences[J]. Obes Rev, 2010, 11(1): 11-18. DOI: 10.1111/j.1467-789X.2009.00623.x. [27] Facchini F, Chen YD, Hollenbeck CB, et al. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration[J]. JAMA, 1991, 266(21): 3008-3011. DOI: 10.1001/jama.1991.03470210076036.