A cohort study on the association between metabolically unhealthy obesity and hypertension
-
摘要:
目的 探讨代谢性肥胖与高血压发病的关系,为人群高血压防制提供理论依据。 方法 采用前瞻性队列研究设计,于2009年在江苏省宜兴市官林、徐舍2个乡镇采用整群抽样方法纳入4 128名成人进行流行病学基线调查。排除基线2 012名高血压病例,截至2020年7月对2 116名非高血压对象进行高血压发病随访。根据体重和代谢状态将研究对象分为4组:代谢正常体重正常(metabolically healthy and normal weight, MHNW)、代谢正常超重/肥胖(metabolically healthy overweight/obesity, MHO)、代谢异常体重正常(metabolically unhealthy and normal weight, MUNW)、代谢异常超重/肥胖(metabolically unhealthy overweight/obesity, MUO)。采用Cox比例风险回归模型对代谢性肥胖与高血压发病关联进行分析,进一步做分层分析、异质性检验及相加与相乘交互作用分析;排除随访第一年发病的高血压对象、排除偏瘦人群进行敏感性分析。 结果 共随访到新发高血压637例,超重肥胖及代谢异常联合相较于体重正常代谢正常的人群归因危险度(population attributable risk, PAR)及PAR%分别为17.4%、57.93%。Cox回归分析结果显示:与MHNW相比,MHO、MUNW、MUO三组的高血压发病风险增加均有统计学意义,调整后的HR(95% CI)值分别为1.29(1.08~1.56)、1.48(1.09~2.01)、1.70(1.37~2.11),并呈风险递增的趋势(均有P < 0.001)。分层分析和异质性检验结果显示:女性MUO的高血压发病风险(调整HR:2.14)高于男性MUO(调整HR:1.22),P异质性检验= 0.017。相乘交互作用分析结果显示:性别与代谢状态之间存在相乘交互作用,调整后的HR(95% CI)值为1.53(1.06~2.22),P=0.024。排除随访第一年高血压发病的对象或排除偏瘦人群进行敏感性分析,关联强度无明显变化。 结论 代谢性肥胖增加人群高血压发病风险,尤其在女性人群中风险更高。因此,对超重肥胖及代谢异常相关人群进行主动健康干预预防高血压具有十分重要意义。 Abstract:Objective To explore the association between metabolically unhealthy obesity and hypertension, so as to provide theoretical basis for prevention and control of hypertension. Methods A prospective cohort study design was used to investigate the epidemiological baseline of 4 128 adults in Guanlin and Xushe towns of Yixing City, Jiangsu Province in 2009. A total of 2012 hypertensive cases were excluded at baseline and 2116 non-hypertensive subjects were followed up until July 2020. According to the weight and metabolic status, all subjects were grouped into four groups, metabolically healthy and normal weight (MHNW), metabolically healthy overweight/obesity (MHO), metabolically unhealthy and normal weight (MUNW) and metabolically unhealthy overweight/obesity (MUO). Cox proportional risk regression model was used for correlation analysis between metabolic obesity and hypertension. Stratified analysis, heterogeneity test, additive and multiplicative interaction analysis were further carried out. We also conducted sensitivity analyses for the population with developing hypertension in the first year of follow-up and the thin individuals excluded. Results 637 participants developed hypertension during followed-up. The population attributable risk (PAR) and its percentage (PAR%) of obesity and metabolically unhealthy were 17.4% and 57.93%, respectively. Compared with MHNW, the MHO, MUNW and MUO groups had significantly increased risk of hypertension, and the adjusted HR(95% CI) were 1.29 (1.08-1.56), 1.48 (1.09-2.01) and 1.70 (1.37-2.11), respectively, with increasing trends (P < 0.001). The results of stratified analysis and heterogeneity test showed that the risk of hypertension in women (adjusted HR: 2.14) was higher than that in men (adjusted HR: 1.22), and P for heterogeneity test was 0.017. There was a multiplicative interaction between gender and metabolic status, and the adjusted HR(95% CI) was 1.53 (1.06-2.22), P=0.024. No significant change was detected for the association in the sensitivity analysis. Conclusions The metabolically unhealthy obesity significantly increased the risk of hypertension and particularly in women. Therefore, the initiative health intervention for the population with overweight, obesity and metabolic disorders may effectively reduce the risk of hypertension. -
Key words:
- Metabolically unhealthy obesity /
- Hypertension /
- Cohort study /
- Interaction
-
表 1 总人群及不同代谢状况与体重分组基本情况[n(%)]
Table 1. Basic information of the whole population and different metabolical and weight groups [n(%)]
人群特征 总人群(N=2 116) MHNW(n=1 030) MHO(n=640) MUNW(n=146) MUO(n=300) H/χ2值 P值 年龄a(岁) 57.65(50.83, 64.46) 57.83(51.46, 65.75) 56.82(50.82, 62.80) 56.76(49.11, 63.81) 56.75(50.75, 64.74) 5.68 0.128 性别 15.81 0.001 男 853(40.31) 459(44.56) 239(37.34) 51(34.93) 104(34.67) 女 1 263(59.69) 571(55.44) 401(62.66) 95(65.07) 196(65.33) 吸烟者 525(24.81) 297(28.83) 129(20.16) 29(19.86) 70(23.33) 18.64 < 0.001 饮酒者 468(22.12) 244(23.69) 119(18.59) 28(19.18) 77(25.67) 9.02 0.029 BMI a(kg/m2) 23.42(21.49, 25.85) 21.62(20.06, 22.72) 25.96(24.93, 27.41) 22.53(21.62, 23.31) 26.45(25.39, 27.85) 1 580.97 < 0.001 WC a(cm) 82.00(76.00, 88.00) 77.00(73.00, 82.00) 86.00(80.25, 90.00) 84.00(80.75, 90.00) 90.00(85.00, 96.00) 730.16 < 0.001 SBP a(mm Hg) 127.00(119.00, 133.00) 125.00(115.00, 132.00) 125.00(119.00, 130.00) 132.50(128.75, 137.25) 130.00(124.00, 135.00) 123.57 < 0.001 DBP a(mm Hg) 80.00(76.00, 83.00) 79.00(74.00, 82.50) 80.00(76.13, 82.00) 82.00(78.00, 86.25) 81.00(78.00, 85.00) 87.96 < 0.001 TC a(mmol/L) 4.77(4.17, 5.37) 4.69(4.12, 5.29) 4.85(4.27, 5.40) 4.80(4.11, 5.52) 4.85(4.14, 5.66) 12.21 < 0.001 TG a(mmol/L) 1.19(0.83, 1.83) 0.99(0.73, 1.40) 1.23(0.89, 1.70) 2.26(1.34, 3.10) 2.32(1.39, 3.23) 411.07 < 0.001 HDL-C a(mmol/L) 1.33(1.14, 1.55) 1.42(1.21, 1.62) 1.32(1.15, 1.52) 1.17(0.97, 1.52) 1.14(0.96, 1.36) 190.74 < 0.001 LDL-C a(mmol/L) 2.59(2.18, 3.05) 2.53(2.14, 2.99) 2.71(2.32, 3.15) 2.51(2.03, 3.02) 2.63(2.11, 3.11) 24.50 < 0.001 FPG a(mmol/L) 5.22(4.78, 5.67) 5.11(4.71, 5.49) 5.17(4.75, 5.50) 5.71(5.02, 6.32) 5.83(5.21, 6.62) 203.39 < 0.001 脑卒中史 49(2.32) 29(2.82) 8(1.25) 3(2.05) 9(3.00) 6.64 0.301 冠心病史 50(2.36) 21(2.04) 18(2.81) 3(2.05) 8(2.67) 3.00 0.799 高血压史 408(19.28) 189(18.35) 87(13.59) 45(30.82) 87(29.00) 44.58 < 0.001 糖尿病史 68(3.21) 24(2.33) 9(1.41) 6(4.11) 29(9.67) 49.85 < 0.001 注:a采用[M(P25, P75)]表示。 表 2 不同代谢体重分组与高血压发病的关联分析
Table 2. Analyses of association between different metabolical and weight groups and the risk of hypertension
随访信息 模型 MHNW(n=1 030) MHO(n=640) MUNW(n=146) MUO(n=300) P值a 发病人数 268 199 50 120 随访人年 9 082.95 5 496.80 1 184.56 2 443.58 发病密度(/万人年) 295.06 362.03 422.10 491.08 HR (95% CI)值 模型1 1.00 1.21(1.01~1.46) 1.42(1.05~1.92) 1.65(1.33~2.05) < 0.001 模型2 1.00 1.29(1.07~1.55) 1.48(1.10~2.01) 1.72(1.39~2.14) < 0.001 模型3 1.00 1.29(1.08~1.56) 1.48(1.09~2.01) 1.70(1.37~2.11) < 0.001 注:模型1:不调整变量;模型2:调整年龄、性别;模型3:调整年龄、性别、吸烟、饮酒、高血压家族史;a趋势性检验。 表 3 不同代谢体重分组与高血压发病关联的分层分析及异质性检验
Table 3. Stratified analyses and heterogeneity test of association between different metabolical and weight groups and hypertension
分层因素 MHNW (N=1 030) MHO(n=640) MUNW(n=146) MUO(n=300) HR(95% CI)值a P值b HR(95% CI)值a P值b HR(95% CI)值a P值b 年龄(岁) <60 1.00 1.35(1.04~1.76) 0.581 1.32(0.85~2.05) 0.328 1.78(1.31~2.41) 0.824 ≥60 1.00 1.22(0.94~1.58) 1.79(1.18~2.73) 1.69(1.23~2.32) 性别 男 1.00 1.28(0.97~1.68) 0.753 1.30(0.79~2.16) 0.467 1.22(0.85~1.76) 0.017 女 1.00 1.36(1.05~1.75) 1.65(1.12~2.43) 2.14(1.62~2.83) 吸烟 否 1.00 1.29(1.04~1.60) 0.663 1.58(1.13~2.22) 0.544 1.86(1.45~2.39) 0.215 是 1.00 1.42(0.98~2.05) 1.23(0.60~2.56) 1.34(0.86~2.10) 饮酒 否 1.00 1.28(1.03~1.59) 0.630 1.55(1.11~2.18) 0.661 1.93(1.51~2.48) 0.069 是 1.00 1.42(0.98~2.06) 1.31(0.65~2.62) 1.20(0.77~1.88) 注:a调整年龄、性别、吸烟、饮酒、高血压家族史;b异质性检验结果。 表 4 性别与代谢性肥胖对高血压发病的相加及相乘交互作用
Table 4. The additive and multiplicative interaction of sex and metabolically unhealthy obesity on the incidence of hypertension
模型 相加交互作用 相乘交互作用 RERI (95% CI)值 P值 HR(95% CI)值 P值 模型1 0.50(0.12~0.89) 0.011 1.68(1.16~2.44) 0.006 模型2 0.06(-0.52~0.64) 0.844 1.51(1.04~2.19) 0.029 模型3 0.06(-0.52~0.64) 0.842 1.53(1.06~2.22) 0.024 表 5 不同代谢体重分组与高血压发病的敏感性分析
Table 5. Sensitivity analysis of different metabolic and weight groups and hypertension
排除对象 模型 MHNW HR(95% CI)值 P值 MHO MUNW MUO值 排除随访第一年高血压发病 模型1 1.00 1.16(0.96~1.41) 1.35(0.98~1.84) 1.68(1.35~2.09) < 0.001 模型2 1.00 1.24(1.03~1.50) 1.41(1.03~1.94) 1.75(1.41~2.18) < 0.001 模型3 1.00 1.24(1.03~1.51) 1.42(1.03~1.94) 1.74(1.40~2.17) < 0.001 排除偏瘦人群重新分组 模型1 1.00 1.23(1.02~1.48) 1.40(1.02~1.90) 1.68 (1.35~2.08) < 0.001 模型2 1.00 1.29(1.07~1.56) 1.44(1.06~1.97) 1.72(1.38~2.14) < 0.001 模型3 1.00 1.29(1.07~1.56) 1.44(1.06~1.97) 1.69(1.36~2.11) < 0.001 注:模型1:不调整变量;模型2:调整年龄、性别;模型3:调整年龄、性别、吸烟、饮酒、高血压家族史。 -
[1] Wang Z, Chen Z, Zhang L, et al. Status of hypertension in China: results from the China hypertension survey, 2012-2015[J]. Circulation, 2018, 137(22): 2344-2356. DOI: 10.1161/CIRCULATIONAHA.117.032380. [2] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. DOI: 10.3969/j.issn.1000-3614.2021.06.001.The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Cardiovascular health and disease report 2020 summary[J]. Chin Circul J, 2021, 36(6): 521-545. DOI: 10.3969/j.issn.1000-3614.2021.06.001. [3] Gu D, He J, Coxson PG, et al. The cost-effectiveness of low-cost essential antihypertensive medicines for hypertension control in China: a modelling study[J]. PLoS Med, 2015, 12(8): e1001860. DOI: 10.1371/journal.pmed.1001860. [4] 姜勇. 我国成人超重肥胖流行现状、变化趋势及健康危害研究[D]. 北京: 中国疾病预防控制中心, 2013.Jiang Y. Study on prevalence, secular trends and health risk of overweight and obesity among Chinese adults[D]. Beijing: China Center for Disease Control and Prevention, 2013. [5] Zeng Q, Li N, Pan XF, et al. Clinical management and treatment of obesity in China[J]. Lancet Diabetes Endocrinol, 2021, 9(6): 393-405. DOI: 10.1016/S2213-8587(21)00047-4. [6] Institute for Health Metrics and Evaluation. Global health data exchange[EB/OL]. (2020-12-08)[2022-02-01]. http://ghdx.healthdata.org/gbd-results-tool. [7] Dong Y, Ma J, Song Y, et al. Secular trends in blood pressure and overweight and obesity in Chinese boys and girls aged 7 to 17 years from 1995 to 2014[J]. Hypertension, 2018, 72(2): 298-305. DOI: 10.1161/HYPERTENSIONAHA.118.11291. [8] Chen Y, Liang X, Zheng S, et al. Association of body fat mass and fat distribution with the incidence of hypertension in a population-based Chinese cohort: a 22-year follow-up[J]. J Am Heart Assoc, 2018, 7(6): e007153. DOI: 10.1161/JAHA.117.007153. [9] Momin M, Fan F, Li J, et al. Joint effects of body mass index and waist circumference on the incidence of hypertension in a community-based Chinese population[J]. Obes Facts, 2020, 13(2): 245-255. DOI: 10.1159/000506689. [10] 张景锋, 李文宇, 陈敏琪, 等. 潮州市居民肥胖状态与高血压关联强度的剂量-反应关系[J]. 中华疾病控制杂志, 2022, 26(2): 144-149. DOI: 10.16462/j.cnki.zhjbkz.2022.02.004.Zhang JF, Li WY, Chen MQ, et al. Dose-response relationship between obesity and hypertension in Chaozhou[J]. Chin J Dis Control Prev, 2022, 26(2): 144-149. DOI: 10.16462/j.cnki.zhjbkz.2022.02.004. [11] Hall JE, do Carmo JM, da Silva AA, et al. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms[J]. Circ Res, 2015, 116(6): 991-1006. DOI: 10.1161/CIRCRESAHA.116.305697. [12] Seravalle G, Grassi G. Obesity and hypertension[J]. Pharmacol Res, 2017, 122: 1-7. DOI: 10.1016/j.phrs.2017.05.013. [13] 王霄霄, 王海霞. 原发性高血压与代谢性疾病的相关性研究进展[J]. 中西医结合心脑血管病杂志, 2020, 18(14): 2262-2264. DOI: 10.12102/j.issn.16721349.2020.14.016.Wang XX, Wang HX. Research progress in the correlation between essential hypertension and metabolic diseases[J]. Chinese Journal of Integrated Medicine on Cardio-/Cerebrovascular Diseases, 2020, 18(14): 2262-2264. DOI: 10.12102/j.issn.16721349.2020.14.016. [14] Garrison RJ, Kannel WB, Stokes J 3rd, et al. Incidence and precursors of hypertension in young adults: the framingham offspring study[J]. Prev Med, 1987, 16(2): 235-251. DOI: 10.1016/0091-7435(87)90087-9. [15] Seravalle G, Grassi G. Sympathetic nervous system, hypertension, obesity and metabolic syndrome[J]. High Blood Press Cardiovasc Prev, 2016, 23(3): 175-179. DOI: 10.1007/s40292-016-0137-4. [16] Hall JE, Brands MW, Henegar JR. Mechanisms of hypertension and kidney disease in obesity[J]. Ann N Y Acad Sci, 1999, 892: 91-107. DOI: 10.1111/j.1749-6632.1999.tb07788.x. [17] Bruno RM, Ghiadoni L, Seravalle G, et al. Sympathetic regulation of vascular function in health and disease[J]. Front Physiol, 2012, 3: 284. DOI: 10.3389/fphys.2012.00284. [18] Gruber T, Pan C, Contreras RE, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension[J]. Cell Metab, 2021, 33(6): 1155-1170. DOI: 10.1016/j.cmet.2021.04.007. [19] 谢铭, 曾媛, 袁姝倩, 等. 超重/肥胖与高同型半胱氨酸血症的交互作用对高血压发病的影响[J]. 中华疾病控制杂志, 2021, 25(11): 1269-1275. DOI: 10.16462/j.cnki.zhjbkz.2021.11.006.Xie M, Zeng Y, Yuan SQ, et al. Interaction of overweight/obesity and hyperhomocysteinemia on risk of hypertension[J]. Chin J Dis Control Prev, 2021, 25(11): 1269-1275. DOI: 10.16462/j.cnki.zhjbkz.2021.11.006. [20] Hill CH, Mecham R, Starcher B. Fibrillin-2 defects impair elastic fiber assembly in a homocysteinemic chick model[J]. J Nutr, 2002, 132(8): 2143-2150. DOI: 10.1093/jn/132.8.2143. [21] 冯金花, 赵统秀. 代谢性指标与生活方式对高血压患病率的影响[J]. 中国现代医学杂志, 2018, 28(14): 84-88.Feng JH, Zhao TX. Metabolic indicators and lifestyle influence on the prevalence of hypertension[J]. Chin J Mod Med, 2018, 28(14): 84-88. [22] Stefan N, Schick F, Häring HU. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans[J]. Cell Metab, 2017, 26(2): 292-300. DOI: 10.1016/j.cmet.2017.07.008. [23] Fu Q. Sex differences in sympathetic activity in obesity and its related hypertension[J]. Ann N Y Acad Sci, 2019, 1454(1): 31-41. DOI: 10.1111/nyas.14095. [24] Shungin D, Winkler TW, Croteau-Chonka DC, et al. New genetic loci link adipose and insulin biology to body fat distribution[J]. Nature, 2015, 518(7538): 187-196. DOI: 10.1038/nature14132. [25] Regitz-Zagrosek V, Lehmkuhl E, Mahmoodzadeh S. Gender aspects of the role of the metabolic syndrome as a risk factor for cardiovascular disease[J]. Gend Med, 2007, 4: 162-177. DOI: 10.1016/s1550-8579(07)80056-8. [26] Whelan J, Love P, Romanus A, et al. A map of community-based obesity prevention initiatives in Australia following obesity funding 2009-2013[J]. Aust N Z J Public Health, 2015, 39(2): 168-171. DOI: 10.1111/1753-6405.12296.