• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SARS-CoV-2原型株无症状感染对Omicron株BA.1、BA.2与BA.5的保护概率

郑楠 陈鑫华 陆婉莹 余宏杰

郑楠, 陈鑫华, 陆婉莹, 余宏杰. SARS-CoV-2原型株无症状感染对Omicron株BA.1、BA.2与BA.5的保护概率[J]. 中华疾病控制杂志, 2023, 27(2): 164-168. doi: 10.16462/j.cnki.zhjbkz.2023.02.007
引用本文: 郑楠, 陈鑫华, 陆婉莹, 余宏杰. SARS-CoV-2原型株无症状感染对Omicron株BA.1、BA.2与BA.5的保护概率[J]. 中华疾病控制杂志, 2023, 27(2): 164-168. doi: 10.16462/j.cnki.zhjbkz.2023.02.007
ZHENG Nan, CHEN Xin-hua, LU Wan-ying, YU Hong-jie. Protection probability against SARS-CoV-2 Omicron variant BA.1, BA.2 and BA.5 in asymptomatic infection caused by prototype strain[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(2): 164-168. doi: 10.16462/j.cnki.zhjbkz.2023.02.007
Citation: ZHENG Nan, CHEN Xin-hua, LU Wan-ying, YU Hong-jie. Protection probability against SARS-CoV-2 Omicron variant BA.1, BA.2 and BA.5 in asymptomatic infection caused by prototype strain[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(2): 164-168. doi: 10.16462/j.cnki.zhjbkz.2023.02.007

SARS-CoV-2原型株无症状感染对Omicron株BA.1、BA.2与BA.5的保护概率

doi: 10.16462/j.cnki.zhjbkz.2023.02.007
基金项目: 

国家自然科学基金 82130093

详细信息
    通讯作者:

    余宏杰,E-mail:yhj@fudan.edu

  • 中图分类号: R183

Protection probability against SARS-CoV-2 Omicron variant BA.1, BA.2 and BA.5 in asymptomatic infection caused by prototype strain

Funds: 

National Natural Science Foundation of China 82130093

More Information
  • 摘要:   目的  评估SARS-CoV-2原型株无症状感染后对奥密克戎株(B.1.1.529,Omicron)BA.1、BA.2与BA.5感染、有症状感染和重症感染的保护概率。  方法  基于前期研究得到的无症状感染原型株者中和抗体动态曲线,利用logistic回归的预测模型估计无症状感染者在确诊后28 d、51 d和261 d对Omicron株BA.1、BA.2和BA.5感染所致的感染、有症状感染、重症三种结局的保护概率。  结果  SARS-CoV-2原型株无症状感染者在确诊后28 d,对Omicron株BA.1、BA.2和BA.5再感染的保护概率分别为30%(95% CI:16%~52%)、23%(95% CI:15%~36%)和8%(95% CI:4%~16%),到261 d分别降至9%(95% CI:3%~21%)、6%(95% CI:3%~12%)和2%(95% CI:1%~4%);确诊后28 d,对Omicron株BA.1、BA.2和BA.5有症状感染的保护概率分别为51%(95% CI:28%~80%)、42%(95% CI:26%~67%)和16%(95% CI:7%~40%),到261 d分别降至16%(95% CI:7%~35%)、12%(95% CI:7%~22%)和3%(95% CI:1%~8%);确诊后28 d对Omicron株BA.1、BA.2和BA.5感染所致的重症结局的保护概率分别为91%(95% CI:72%~98%)、88%(95% CI:70%~97%)和66%(95% CI:35%~90%),到261 d分别降至60%(95% CI:35%~86%)、51%(95% CI:32%~75%)和22%(95% CI:10%~50%)。  结论  SARS-CoV-2原型株无症状感染者体内的中和抗体对Omicron株BA.5的保护概率低于BA.1和BA.2,对重症结局的保护效果较好,有症状感染次之,对感染的保护效果较差。
  • 图  1  SARS-CoV-2原型株无症状感染者对Omicron株BA.1、BA.2与BA.5的保护概率

    Figure  1.  Protection probability against Omicron BA.1, BA.2 and BA.5 in asymptomatic individuals infected with SARS-CoV-2 prototype strain

  • [1] World Health Organization. Coronavirus disease (COVID-19) pandemic[EB/OL]. (2022-12-11)[2022-12-19]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
    [2] Plante JA, Mitchell BM, Plante KS, et al. The variant gambit: COVID-19's next move[J]. Cell Host Microbe, 2021, 29(4): 508-515. DOI: 10.1016/j.chom.2021.02.020.
    [3] World Health Organization. Tracking SARS-CoV-2 variants[EB/OL]. (2023-01-13)[2023-01-16]. https://www.who.int/activities/tracking-SARS-CoV-2-variants.
    [4] Evans JP, Zeng C, Qu PK, et al. Neutralization of SARS-CoV-2 Omicron sub-lineages BA. 1, BA. 1.1, and BA. 2[J]. Cell Host Microbe, 2022, 30(8): 1093-1102. e3. DOI: 10.1016/j.chom.2022.04.014.
    [5] Ai JW, Wang X, He XY, et al. Antibody evasion of SARS-CoV-2 Omicron BA. 1, BA. 1.1, BA. 2, and BA. 3 sub-lineages[J]. Cell Host Microbe, 2022, 30(8): 1077-1083. e4. DOI: 10.1016/j.chom.2022.05.001.
    [6] Lyngse FP, Kirkeby CT, Denwood M, et al. Transmission of SARS-CoV-2 Omicron VOC subvariants BA. 1 and BA. 2: Evidence from Danish Households[J]. medRxiv, 2022, 13(1): 5760. DOI: 10.1101/2022.01.28.22270044.
    [7] Stegger M, Edslev SM, Sieber RN, et al. Occurrence and significance of Omicron BA. 1 infection followed by BA. 2 reinfection[J/OL]. medRxiv, 2022. DOI: 10.1101/2022.02.19.22271112.
    [8] Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody escape of SARS-CoV-2 Omicron BA. 4 and BA. 5 from vaccine and BA. 1 serum[J]. Cell, 2022, 185(14): 2422-2433. e13. DOI: 10.1016/j.cell.2022.06.005.
    [9] Cao YL, Yisimayi A, Jian FC, et al. BA. 2.12.1, BA. 4 and BA. 5 escape antibodies elicited by Omicron infection[J]. Nature, 2022, 608(7923): 593-602. DOI: 10.1038/s41586-022-04980-y.
    [10] Meyerowitz EA, Richterman A, Bogoch Ⅱ, et al. Towards an accurate and systematic characterisation of persistently asymptomatic infection with SARS-CoV-2[J]. Lancet Infect Dis, 2021, 21(6): e163-e169. DOI: 10.1016/s1473-3099(20)30837-9.
    [11] Chen XH, Chen ZX, Azman AS, et al. Serological evidence of human infection with SARS-CoV-2: a systematic review and meta-analysis[J]. Lancet Glob Health, 2021, 9(5): e598-e609. DOI: 10.1016/s2214-109x(21)00026-7.
    [12] Chen XH, Yan XM, Sun KY, et al. Estimation of disease burden and clinical severity of COVID-19 caused by Omicron BA. 2 in Shanghai, February-June 2022[J]. Emerg Microbes Infect, 2022, 11(1): 2800-2807. DOI: 10.1080/22221751.2128435.
    [13] Gruell H, Vanshylla K, Weber T, et al. Antibody-mediated neutralization of SARS-CoV-2[J]. Immunity, 2022, 55(6): 925-944. DOI: 10.1016/j.immuni.2022.05.005.
    [14] Khanolkar A. Elucidating T Cell and B Cell Responses to SARS-CoV-2 in Humans: Gaining Insights into Protective Immunity and Immunopathology[J]. Cells, 2021, 11(1): 67. DOI: 10.3390/cells11010067.
    [15] Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection[J]. Nat Med, 2021, 27(7): 1205-1211. DOI: 10.1038/s41591-021-01377-8.
    [16] Pilz S, Theiler-Schwetz V, Trummer C, et al. SARS-CoV-2 reinfections: Overview of efficacy and duration of natural and hybrid immunity[J]. Environ Res, 2022, 209: 112911. DOI: 10.1016/j.envres.2022.112911.
    [17] Altarawneh HN, Chemaitelly H, Tang P, et al. Protection afforded by prior infection against SARS-CoV-2 reinfection with the Omicron variant[J/OL]. medRxiv, 2022. DOI: 10.1101/2022.01.05.22268782.
    [18] Lu WY, Zheng N, Chen XH, et al. Long-term neutralizing antibody dynamics against SARS-CoV-2 in symptomatic and asymptomatic infections: a systematic review and meta-analysis[J/OL]. medRxiv, 2022. DOI: 10.1101/2022.12.15.22283503.
    [19] Chen XH, Wang W, Chen XH, et al. Prediction of long-term kinetics of vaccine-elicited neutralizing antibody and time-varying vaccine-specific efficacy against the SARS-CoV-2 Delta variant by clinical endpoint[J]. BMC Med, 2022, 20(1): 36. DOI: 10.1186/s12916-022-02249-9.
    [20] Zou J, Xia HJ, Xie XP, et al. Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection[J]. Nat Commun, 2022, 13(1): 852. DOI: 10.1038/s41467-022-28544-w.
    [21] Cheng SM, Mok CKP, Chan KC, et al. SARS-CoV-2 Omicron variant BA. 2 neutralisation in sera of people with Comirnaty or CoronaVac vaccination, infection or breakthrough infection, Hong Kong, 2020 to 2022[J]. Euro Surveill, 2022, 27(18): 2200178. DOI: 10.2807/1560-7917.Es.2022.27.18.2200178.
    [22] Cheng SS, Mok CK, Li JK, et al. Plaque-neutralizing antibody to BA. 2.12.1, BA. 4 and BA. 5 in individuals with three doses of BioNTech or CoronaVac vaccines, natural infection and breakthrough infection[J]. J Clin Virol, 2022, 156: 105273. DOI: 10.1016/j.jcv.2022.105273.
    [23] Goldberg Y, Mandel M, Bar-On YM, et al. Protection and Waning of Natural and Hybrid Immunity to SARS-CoV-2[J]. N Engl J Med, 2022, 386(23): 2201-2212. DOI: 10.1056/NEJMoa2118946.
    [24] Andeweg SP, De Gier B, Eggink D, et al. Protection of COVID-19 vaccination and previous infection against Omicron BA. 1, BA. 2 and Delta SARS-CoV-2 infections[J]. Nat Commun, 2022, 13(1): 4738. DOI: 10.1038/s41467-022-31838-8.
    [25] Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Effects of Previous Infection and Vaccination on Symptomatic Omicron Infections[J]. N Engl J Med, 2022, 387(1): 21-34. DOI: 10.1056/NEJMoa2203965.
    [26] Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Protective Effect of Previous SARS-CoV-2 Infection against Omicron BA. 4 and BA. 5 Subvariants[J]. N Engl J Med, 2022, 387(17): 1620-1622. DOI: 10.1056/NEJMc2209306.
    [27] Lau EHY, Tsang OTY, Hui DSC, et al. Neutralizing antibody titres in SARS-CoV-2 infections[J]. Nat Commun, 2021, 12(1): 63. DOI: 10.1038/s41467-020-20247-4.
    [28] Yu JY, Collier AY, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron BA. 1 and BA. 2 Variants[J]. N Engl J Med, 2022, 386(16): 1579-1580. DOI: 10.1056/NEJMc2201849.
    [29] Chemaitelly H, Ayoub HH, Almukdad S, et al. Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA. 1 and BA. 2 subvariants in Qatar[J]. Nat Commun, 2022, 13(1): 3082. DOI: 10.1038/s41467-022-30895-3.
    [30] Collie S, Nayager J, Bamford L, et al. Effectiveness and Durability of the BNT162b2 Vaccine against Omicron Sublineages in South Africa[J]. N Engl J Med, 2022, 387(14): 1332-1333. DOI: 10.1056/NEJMc2210093.
  • 加载中
图(1)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  155
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-25
  • 修回日期:  2023-01-13
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2023-02-10

目录

    /

    返回文章
    返回