• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布滞后非线性模型的环境因素与湖州市流感样病例发病的关联及滞后性研究

徐澳 刘光涛 刘艳 张鹏 王伟炳

徐澳, 刘光涛, 刘艳, 张鹏, 王伟炳. 基于分布滞后非线性模型的环境因素与湖州市流感样病例发病的关联及滞后性研究[J]. 中华疾病控制杂志, 2023, 27(7): 783-787. doi: 10.16462/j.cnki.zhjbkz.2023.07.007
引用本文: 徐澳, 刘光涛, 刘艳, 张鹏, 王伟炳. 基于分布滞后非线性模型的环境因素与湖州市流感样病例发病的关联及滞后性研究[J]. 中华疾病控制杂志, 2023, 27(7): 783-787. doi: 10.16462/j.cnki.zhjbkz.2023.07.007
XU Ao, LIU Guangtao, LIU Yan, ZHANG Peng, WANG Weibing. Analysis on association and lag effects of environmental factors on incidence of influenza like illness in Huzhou based on the distribution lag nonlinear model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(7): 783-787. doi: 10.16462/j.cnki.zhjbkz.2023.07.007
Citation: XU Ao, LIU Guangtao, LIU Yan, ZHANG Peng, WANG Weibing. Analysis on association and lag effects of environmental factors on incidence of influenza like illness in Huzhou based on the distribution lag nonlinear model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(7): 783-787. doi: 10.16462/j.cnki.zhjbkz.2023.07.007

基于分布滞后非线性模型的环境因素与湖州市流感样病例发病的关联及滞后性研究

doi: 10.16462/j.cnki.zhjbkz.2023.07.007
徐澳和刘光涛为共同第一作者
基金项目: 

上海市2021年度“科技创新行动计划”长三角科技创新共同体领域 21002411400

详细信息
    通讯作者:

    王伟炳,E-mail: wwb@fudan.edu.cn

    张鹏,E-mail: hzjkzp@163.com

  • 中图分类号: R122;R183

Analysis on association and lag effects of environmental factors on incidence of influenza like illness in Huzhou based on the distribution lag nonlinear model

XU Ao and LIU Guangtao contributed equally to this article
Funds: 

Shanghai 2021 "Science and Technology Innovation Action Plan" Yangtze River Delta Science and Technology Innovation Community Field Project 21002411400

More Information
  • 摘要:   目的  探讨环境因素对湖州市流感样病例(influenza-like illness,ILI)流行的关联性及其滞后效应。  方法  收集2015-2019年湖州市ILI监测信息及同期环境资料,构建分布滞后非线性模型(distributed lag non-linear models, DLNM),探讨ILI与各环境因素之间的具体联系,定量评估各环境因素对ILI发病的累积滞后效应。  结果  2015-2019年湖州市共报告ILI 156 078例;各环境因素中,对ILI发病有关联的因素包括平均温度、温差、日照时长、细颗粒物(fine particulate matter, PM2.5)和SO2。其中低平均温度(0 ℃)和低日照时长(0 h)在滞后0~2周时,ILI发病风险增加,并分别在滞后1周(RR=1.385,95% CI: 1.110~1.745)和2周(RR=1.228,95% CI: 1.053~1.432)时发病风险最大。高平均温度(30.0 ℃)滞后0周(即时效应)时发病风险最大(RR=1.416,95% CI: 1.171~1.713)。PM2.5与SO2的最大发病风险分别在滞后0周和1周。  结论  2015-2019年湖州市环境因素中,高温、低温、低日照时长、高浓度PM2.5和SO2均会增加ILI的发病风险,并有一定的滞后性。其中高温的影响主要发生在滞后0周,而低温的影响可持续2周。
  • 图  1  2015-2019年湖州市环境因素与ILI的相关系数

    1. AQI:空气污染指数;2. a表示0.01<p≤0.05; 3. b表示0.001<p≤0.01; 4. c表示p≤0.001。

    Figure  1.  Correlation coefficients between environmental factors and ILI in Huzhou City from 2015 to 2019

    1. AQI: air quality index; 2. a means 0.01 < p≤0.05; 3. b means 0.001 < p≤0.01; 4. c indicates p≤0.001.

    表  1  2015-2019年湖州市每周ILI发病数及环境因素基本情况

    Table  1.   Weekly cases of ILI and basic environmental factors in Huzhou City from 2015 to 2019

    因素 Factor 最小值 Min [M(P25, P75)] 最大值 Max 因素 Factor 最小值 Min [M(P25, P75)] 最大值 Max
    年龄组/岁 Age group/years 气象因素 Meteorological factors
      0~ < 5 105.0 298.0(383.0, 472.0) 907.0   降雨量/mm Rainfall/mm 0 0.6(2.4, 6.4) 36.2
      5~ < 15 46.0 80.0(118.0, 191.0) 738.0   日照时长/h Sunlight duration/h 0 2.7(4.6, 6.7) 11.5
      15~ < 25 0 6.0(9.5, 15.0) 50.0   相对湿度/% Relative humidity/% 55.3 70.9(77.9, 83.9) 95.9
      25~ < 60 4.0 16.0(24.0, 37.0) 235.0 大气污染物 Atmospheric pollutant
      ≥60 0 4.0(6.0, 9.0) 95.0   AQI 25.3 49.2(61.8, 77.3) 181.3
      合计Total 310.0 415.0(557.0, 727.0) 1 649.0   PM2.5/(μg·m-3) 10.7 27.2(37.2, 49.7) 141.4
    气象因素 Meteorological factors   PM10/(μg·m-3) 23.7 46.0(62.5, 81.7) 183.1
      平均温度/℃ Average temperature/℃ -1.6 9.6(18.6, 24.6) 33.4   SO2/(μg·m-3) 3.5 9.7(13.1, 17.3) 33.4
      最大温差/℃ Maximum temp difference/℃ 2.5 5.9(7.0, 8.9) 14.8   NO2/(μg·m-3) 10.6 28.2(35.0, 46.6) 79.7
      平均风速/(m·s-1) Average wind speed/(m·s-1) 1.1 1.8(2.1, 2.4) 3.8   O3/(μg·m-3) 14.1 43.7(63.9, 81.8) 128.4
      最大风速/(m·s-1) Maximum wind speed/(m·s-1) 3.2 4.2(4.6, 5.1) 7.5   CO/(μg·m-3) 0.4 0.7(0.8, 1.0) 1.6
    注:AQI, 空气污染指数。
    Note: AQI, air quality index.
    下载: 导出CSV

    表  2  2015-2019年湖州市ILI的不同影响因素RR

    Table  2.   RR of different influencing factor of ILI in Huzhou City from 2015 to 2019

    因素 Factor 值 Value RR值(95% CI) RR value (95% CI)
    滞后0周(即时效应) Lag 0 week (Immediate effect) 滞后1周 Lag 1 week 滞后2周 Lag 2 weeks 滞后0~2周(累积效应) Lag 0-2 weeks (Cumulative effect)
    平均温度/℃ Average temperature/℃ 0 1.318(1.048~1.657) 1.385(1.110~1.745) 1.339(1.066~1.680) 2.063(1.399~3.040)
    15 0.995(0.974~1.016) 1.009(0.988~1.031) 1.017(0.995~1.039) 1.010(0.963~1.060)
    30 1.416(1.171~1.713) 1.198(0.986~1.456) 1.040(0.847~1.276) 1.735(1.042~2.888)
    最大温差/℃ Maximum temp difference/℃ 5 1.068(1.013~1.127) 1.007(0.957~1.059) 1.027(0.974~1.082) 1.009(0.885~1.150)
    10 1.206(1.079~1.347) 1.034(0.928~1.153) 1.115(0.999~1.244) 1.164(0.898~1.509)
    日照时长/h Sunlight duration/h 0 1.197(1.034~1.386) 1.188(1.024~1.378) 1.228(1.053~1.432) 2.162(1.457~3.207)
    5 0.987(0.872~1.118) 1.068(0.938~1.216) 1.070(0.933~1.226) 1.348(0.934~1.946)
    PM2.5/(μg·m-3) 20 1.020(1.006~1.034) 1.002(0.988~1.016) 1.011(0.997~1.026) 1.041(0.998~1.085)
    50 1.099(1.028~1.175) 1.011(0.946~1.080) 1.055(0.987~1.127) 1.208(0.990~1.474)
    100 1.244(1.067~1.452) 1.026(0.880~1.196) 1.131(0.969~1.319) 1.548(0.976~2.455)
    140 1.374(1.098~1.720) 1.038(0.831~1.297) 1.196(0.956~1.496) 1.888(0.965~3.694)
    SO2/(μg·m-3) 15 1.073(0.993~1.161) 1.093(1.012~1.180) 1.063(0.983~1.148) 1.264(1.004~1.590)
    25 1.145(0.986~1.330) 1.185(1.024~1.371) 1.123(0.968~1.302) 1.563(1.008~2.423)
    注:① P<0.05。
    Note: ① P<0.05.
    下载: 导出CSV
  • [1] 李兰娟, 任红. 传染病学[M]. 第9版. 北京: 人民卫生出版社, 2018: 67-68.

    Li LJ, Ren H. Infectious diseases[M]. 9 rd ed. Beijing: People's Medical Publishing House, 2018: 67-68.
    [2] Macias AE, McElhaney JE, Chaves SS, et al. The disease burden of influenza beyond respiratory illness[J]. Vaccine, 2021, 39(Suppl 1): A6-A14. DOI: 10.1016/j.vaccine.2020.09.048.
    [3] Li J, Chen YZ, Wang XL, et al. Influenza-associated disease burden in mainland China: a systematic review and meta-analysis[J]. Sci Rep, 2021, 11(1): 2886. DOI: 10.1038/s41598-021-82161-z.
    [4] Wang XL, Yang L, He DH, et al. Different responses of influenza epidemic to weather factors among Shanghai, Hong Kong, and British Columbia[J]. Int J Biometeorol, 2017, 61(6): 1043-1053. DOI: 10.1007/s00484-016-1284-y.
    [5] Soebiyanto RP, Clara W, Jara J, et al. The role of temperature and humidity on seasonal influenza in tropical areas: Guatemala, El Salvador and Panama, 2008-2013[J]. PLoS One, 2014, 9(6): e100659. DOI: 10.1371/journal.pone.0100659.
    [6] 国家卫生和计划生育委员会办公厅. 国家卫生计生委办公厅关于印发全国流感监测方案(2017年版)的通知[EB/OL]. (2017-04-01)[2022-10-10]. http://www.nhc.gov.cn/jkj/s3577/201704/ed1498d9e64144738cc7f8db61a39506.shtml.

    Office of the National Health and Family Planning Commission. National influenza surveillance programme (2017)[EB/OL]. (2017-04-01)[2022-10-10]. http://www.nhc.gov.cn/jkj/s3577/201704/ed1498d9e64144738cc7f8db61a39506.shtml.
    [7] Cowling BJ, Wong IOL, Ho LM, et al. Methods for monitoring influenza surveillance data[J]. Int J Epidemiol, 2006, 35(5): 1314-1321. DOI: 10.1093/ije/dyl162.
    [8] Chan PKS, Mok HY, Lee TC, et al. Seasonal influenza activity in Hong Kong and its association with meteorological variations[J]. J Med Virol, 2009, 81(10): 1797-1806. DOI: 10.1002/jmv.21551.
    [9] Lowen AC, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature[J]. PLoS Pathog, 2007, 3(10): 1470-1476. DOI: 10.1371/journal.ppat.0030151.
    [10] Caini S, Spreeuwenberg P, Donker G, et al. Climatic factors and long-term trends of influenza-like illness rates in the Netherlands, 1970-2016[J]. Environ Res, 2018, 167: 307-313. DOI: 10.1016/j.envres.2018.07.035.
    [11] Bao JZ, Wang ZK, Yu CH, et al. The influence of temperature on mortality and its Lag effect: a study in four Chinese Cities with different latitudes[J]. BMC Public Health, 2016, 16: 375. DOI: 10.1186/s12889-016-3031-z.
    [12] Ge WZ, Xu F, Zhao ZH, et al. Association between diurnal temperature range and respiratory tract infections[J]. Biomed Environ Sci, 2013, 26(3): 222-225. DOI: 10.3967/0895-3988.2013.03.009.
    [13] Feng C, Li J, Sun WJ, et al. Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: a time-series analysis in Beijing, China[J]. Environ Health, 2016, 15: 17. DOI: 10.1186/s12940-016-0115-2.
    [14] Xing YF, Xu YH, Shi MH, et al. The impact of PM2.5 on the human respiratory system[J]. J Thorac Dis, 2016, 8(1): E69-E74. DOI: 10.3978/j.issn.2072-1439.2016.01.19.
    [15] Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society. Health effects of outdoor air pollution[J]. Am J Respir Crit Care Med, 1996, 153(1): 3-50. 10.1164/ajrccm.153.1.8542133. doi: 10.1164/ajrccm.153.1.8542133
    [16] Zhang YZ, Ye CC, Yu JX, et al. The complex associations of climate variability with seasonal influenza A and B virus transmission in subtropical Shanghai, China[J]. Sci Total Environ, 2020, 701: 134607. DOI: 10.1016/j.scitotenv.2019.134607.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  134
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 修回日期:  2023-01-07
  • 网络出版日期:  2023-08-08
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回